

Issue Date: Ref. Report No.

February 2, 2021 ISL-21LE080CE-MA

Product Name	:	Little PC
Model(s)	:	LPC-49xxxx ("x" can be 0-9, A-Z or blank for marketing purpose)
Responsible Party	:	Stealth
Address	:	1 – 7550 Highway 27, Woodbridge,
		Ontario, L4H 0S2, Canada

We, International Standards Laboratory Corp., hereby certify that:

The sample ISL received which bearing the trade name and model specified above has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in European Council Directive EMC Directive 2014/30/EU. And Our laboratories is the accredited laboratories and are approved according to ISO/IEC 17025. The device was passed the test performed according to :

Standards:

EN 55032:2015+AC:2016, CISPR 32:2015+COR1:2016: Class A AS/NZS CISPR 32:2015: Class A EN 61000-3-2:2014 and IEC 61000-3-2:2014 EN 61000-3-3:2013 and IEC 61000-3-3:2013 EN 55024:2010+A1:2015 and CISPR 24:2010+A1:2015 EN 61000-4-2:2009 and IEC 61000-4-2:2008 EN 61000-4-3:2006+A1:2008 +A2:2010 and IEC 61000-4-3:2006+A1:2007+A2:2010 EN 61000-4-4:2012 and IEC 61000-4-4:2012 EN 61000-4-5:2014+A1:2017 and IEC 61000-4-5:2014+A1:2017 EN 61000-4-6:2014+AC:2015 and IEC 61000-4-6:2013 EN 61000-4-8:2010 and IEC 61000-4-8:2009 EN 61000-4-11:2004+A1:2017 and IEC 61000-4-11:2004+A1:2017

I attest to the accuracy of data and all measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

The determination of the test results is determined by customer agreement, regulations or standard document specifications.

The Laboratory evaluates measurement inaccuracies based on regulatory or standard document specifications and is listed in the report for reference. The quantitative project part judges the conformity of the test results based on the evaluation results of the standard cited uncertainty, and the qualitative project does not temporarily evaluate the measurement uncertainty.

Angus Chu Angus Chu / Director

International Standards Laboratory Corp. LT Lab. TEL: +886-3-263-8888 FAX: +886-3-263-8899 No. 120, Lane 180, Hsin Ho Rd., Lung-Tan Dist., Tao Yuan City 325, Taiwan

CE TEST REPORT

of EN 55032 / CISPR 32 / AS/NZS CISPR 32 Class A EN 55024 / CISPR 24 / IMMUNITY EN 61000-3-2 / EN 61000-3-3

Product : Little PC LPC-49xxxx ("x" can be 0-9, A-Z or blank for Model(s): marketing purpose)

Applicant: Stealth 1-7550 Highway 27, Woodbridge, Address: Ontario, L4H 0S2, Canada

Test Performed by:

■ ★ International Standards Laboratory Corp. LT Lab. TEL: +886-3-263-8888 FAX: +886-3-263-8899 No. 120, Lane 180, Hsin Ho Rd., Lung-Tan Dist., Tao Yuan City 325, Taiwan

Report No.: ISL-21LE080CE-MA Issue Date : February 2, 2021

Test results given in this report apply only to the specific sample(s) tested and are traceable to national or international standard through calibration of the equipment and evaluating measurement uncertainty herein. The uncertainty of the measurement does not include in consideration of the test result unless the customer required the determination of uncertainty via the agreement, regulation or standard document specification. This test report shall not be reproduced except in full, without the written approval of International Standards Laboratory Corp.

ISL International Standards Laboratory Corp. http://www.isl.com.tw

Contents of Report

1. General	1
1.1 Certification of Accuracy of Test Data	1
1.2 Test Standards	2
1.3 Description of EUT	
1.4 Description of Support Equipment	7
1.5 Software for Controlling Support Unit	8
1.6 I/O Cable Condition of EUT and Support Units	9
2. Power Main Port Conducted Emissions	
2.1 Test Setup and Procedure	10
2.2 Conduction Test Data: Configuration 1	12
2.3 Test Setup Photo	14
3. Telecommunication Port Conducted Emissions	16
3.1 Test Setup and Procedure	16
3.2 Test Data: LAN1\100M	18
3.3 Test Data: LAN1\10M	19
3.4 Test Data: LAN1\1G	20
3.5 Test Data: LAN2\100M	21
3.6 Test Data: LAN2\10M	22
3.7 Test Data: LAN2\1G	23
3.8 Test Data: LAN3\100M	24
3.9 Test Data: LAN3\10M	
3.10 Test Data: LAN3\1G	
3.11 Test Data: LAN4\100M	27
3.12 Test Data: LAN4\10M	28
3.13 Test Data: LAN4\1G	29
3.14 Test Setup Photo	
4. Radiated Disturbance Emissions	
4.1 Test Setup and Procedure	31
4.2 Limit	
4.3 Radiation Test Data: Configuration 1	35
4.4 Test Setup Photo	
5. Voltage Disturbance Emissions at Antenna Terminals	41
5.1 Test Setup and Procedure	41
6. Differential Voltage Emissions	
6.1 Test Setup and Procedure	
7. Outdoor units of home satellite receiving systems	45
7.1 Test Setup and Procedure	
8. Electrostatic discharge (ESD) immunity	47
8.1 Test Specification and Setup	
8.2 Test Data: Configuration	
8.3 Test Point	
8.4 Test Setup Photo	
9. Radio-Frequency, Electromagnetic Field immunity	
9.1 Test Specification and Setup	
9.2 Test Data: Configuration	
9.3 Test Setup Photo	
10. Electrical Fast transients/burst immunity	
-	

10.1	Test Specification and Setup	
10.2	Test Data: Configuration	
10.3	Test Setup Photo	
11. S	Surge Immunity	
11.1	Test Specification and Setup	
11.2	Test Data: Configuration	
11.3	Test Setup Photo	
12. I	mmunity to Conductive Disturbance	
12.1	Test Specification and Setup	
12.2	Test Data: Configuration	
12.3	Test Setup Photo	65
13. F	Power Frequency Magnetic Field immunity	
13.1	Test Specification and Setup	
13.2	Test Data: Configuration	
13.3	Test Setup Photo	
14. V	Voltage Dips, Short Interruption and Voltage Variation immunity	69
14.1	Test Specification and Setup	69
14.2	Test Data: Configuration	
14.3	Test Setup Photo	71
15. H	Harmonics	72
15.1	Test Specification and Setup	72
16. V	Voltage Fluctuations	74
16.1	Test Specification and Setup	74
16.2	Test Data: Configuration	75
16.3	Test Setup Photo	76
17. A	Appendix	77
17.1	Appendix A: Test Equipment	77
17.2	Appendix B: Uncertainty of Measurement	
17.3	Appendix C: Photographs of EUT	

1. General

1.1 Certification of Accuracy of Test Data

Standards:	Please refer to 1.2
Equipment Tested:	Little PC
Model:	LPC-49xxxx ("x" can be 0-9, A-Z or blank for marketing purpose)
Applicant:	Stealth
Sample received Date:	November 6, 2020
Final test Date:	EMI: refer to the date of test data
	EMS: January 19, 2021
Test Site:	Chamber 02; Chamber 14; Conduction 04;
Test Distance:	10m; 3m (above1GHz) (EMI test)
Temperature:	refer to each site test data
Humidity:	refer to each site test data
Atmospheric Pressure:	86 kPa to 106 kPa
Input power:	Conduction input power: AC 230 V / 50 Hz
	Radiation input power: AC 230 V / 50 Hz
	Immunity input power: AC 230 V / 50 Hz
Test Result:	PASS
Report Engineer:	Betty Huang
Test Engineer:	Jovi Lin

-1 of 82-

Approved By:

Benson Chen

Jovi Liu

Benson Chen / Associate Director

1.2 Test Standards

The tests which this report describes were conducted by an independent electromagnetic compatibility consultant, International Standards Laboratory Corp. in accordance with the following

EN 55032:2015+AC:2016, CISPR 32:2015+COR1:2016: Class A: Electromagnetic compatibility of multimedia equipment - Emission requirements.

AS/NZS CISPR 32:2015: Class A: Electromagnetic compatibility of multimedia equipment- Emission requirements

Performed Item	Test Performed	Deviation	Result
Conducted emissions from the AC mains power ports	Yes	No	PASS
Telecommunication Port Conducted Emissions (asymmetric mode)	Yes	No	PASS
Radiated emissions at frequencies below 1 GHz	Yes	No	PASS
Radiated emissions at frequencies above 1 GHz	Yes	No	PASS
Radiated emissions from FM receivers	N/A	N/A	N/A
Voltage Disturbance Emissions at Antenna Terminals	N/A	N/A	N/A
Differential voltage emissions	N/A	N/A	N/A
Outdoor units of home satellite receiving systems	N/A	N/A	N/A

Standard	Description	Results	Criteria
EN 61000-4-2:2009 IEC 61000-4-2:2008	Electrostatic Discharge	Pass	В
EN 61000-4-3:2006+A1:2008 +A2:2010 IEC 61000-4-3:2006+A1:2007+A2:2010	Radio-Frequency, Electromagnetic Field	Pass	А
EN 61000-4-4:2012 IEC 61000-4-4:2012	Electrical Fast Transient/Burst	Pass	В
EN 61000-4-5:2014+A1:2017 IEC 61000-4-5:2014+A1:2017	Surge	Pass	В
EN 61000-4-6:2014+AC:2015 IEC 61000-4-6:2013	Conductive Disturbance	Pass	А
EN 61000-4-8:2010 IEC 61000-4-8:2009	Power Frequency Magnetic Field	Pass	А
EN 61000-4-11:2004+A1:2017 IEC 61000-4-11:2004+A1:2017	Voltage Dips / Short Interruption and Voltage Variation		
	>95% in 0.5 period	Pass	В
	30% in 25 period	Pass	С
	>95% in 250 period	Pass	С

EN 55024:2010+A1:2015 and CISPR 24:2010+A1:2015: Information technology equipment-Immunity characteristics - Limits and methods of measurement.

Standard	Description	Results
EN 61000-3-2:2014 IEC 61000-3-2:2014	Limits for harmonics current emissions	Pass
EN 61000-3-3:2013 IEC 61000-3-3:2013	Limits for voltage fluctuations and flicker in low-voltage supply systems.	Pass

1.2.1 Performance Criteria for Compliance: EN 55024

Performance criterion A

During and after the test the EUT shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a minimum performance level specified by the manufacturer when the EUT is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the EUT if used as intended.

Performance criterion B

After the test, the EUT shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomena below a performance level specified by the manufacturer, when the EUT is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is allowed. However, no change of operating state or stored data is allowed to persist after the test. If the minimum performance level (or the permissible performance loss) is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the EUT if used as intended.

Performance criterion C

During and after testing, a temporary loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls or cycling of the power to the EUT by the user in accordance with the manufacturer's instructions.

Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

1.3 Description of EUT

EUT

This report test data using the report number 21LE080CE

Description	Little PC
Condition	Pre-Production
Model	LPC-49xxxx("x" can be 0-9, A-Z or blank for marketing purpose)
Serial Number	N/A
Maximum resolution	1920*1080 @60Hz
Maximum Operating Frequency	2.4GHz

The devices can be installed inside the EUT are listed below:

Component	Vendor	Description
Motherboard	Stealth	LI91
CPU	Intel	i7-8700T 2.4GHz
Memory	Micron	MTA16ATF2G64HZ-2G6E1
2.5" SATA SSD	WD	WDS120G2G0A-00JH30
ODD	Sony	CRX890S
Adapter (Dedicated peripheral)	FSP	FSP180-AAAN3

The I/O ports of EUT are listed below:

I/O Port Type	Quantity
DC Power Port	1
Audio Port	2
LAN Port (10Mbps/100Mbps/1Gbps)	4
USB 3.0 Port	6
COM Port	2
DVI Port	1
Display Port	1
PS/2 Keyboard Port	1
PS/2 Mouse Port	1

Test Configuration

Configuration	1
Motherboard	Stealth LI91
CPU	Intel i7-8700T 2.4GHz
Memory	Micron MTA16ATF2G64HZ-2G6E1*2
2.5" SATA SSD	WD WDS120G2G0A-00JH30
ODD	Sony CRX890S
Power Supply	FSP FSP180-AAAN3

EMI Noise Source:

Please refer to the technical documents. **EMI Solution:**

N/A

1.4 Description of Support Equipment

TOLE	For EMS test Support Unit: 2~8						
No	Unit	Model Serial No.	Brand	Power Cord	FCC ID		
1	AKiTiO Type-C HDD*6	SK2-U31AS-AKT S/N: N/A	AKiTiO	N/A	FCC DOC		
2	PS/2 Keyboard	Y-S0002 S/N: N/A	Logitch	N/A	FCC DOC		
3	PS/2 Mouse	M-SBM96B S/N: N/A	Logitch	N/A	FCC DOC		
4	LCD Monitor*2	U2412M S/N: N/A	DELL	Non-shielded	FCC DOC		
5	Speaker/ microphone *2	RC E160 S/N: N/A	HTC	N/A	FCC DOC		
6	Modem*2	DM1414 S/N: N/A	Aceex	Non-shielded	FCC DOC		
7	Personal Computer	RW7 S/N: N/A	Lenovo	Non-shielded, Detachable	FCC DOC		
8	Traveling Disk*6	TS16GJF700 S/N: N/A	Transcend	N/A	FCC DOC		

For EMI test Support Unit: 1~7 For EMS test Support Unit: 2~8

1.5 Software for Controlling Support Unit

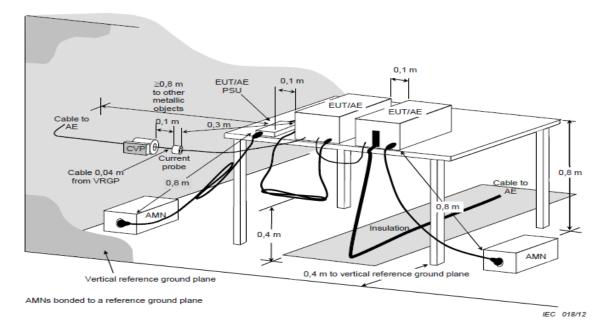
Test programs exercising various part of EUT were used. The programs were executed as follows:

- 1. Send Color bar to the LCD Monitor.
- 2. Read and write data through EUT SSD.
- 3. Read and write AKiTiO Type-C HDD(EMI) / Traveling Disk(EMS) through EUT USB 3.0 port.
- 4. Send audio signal to the Speaker/microphone through EUT Audio Port.
- 5. Receive and transmit packet of EUT to Personal Computer through EUT LAN Port.
- 6. Repeat the above steps.

	Filename	Issued Date
EUT SSD	Intel EMC	09/04/2000
LCD Monitor	Windows Media Player	10/11/2016
AKiTiO Type-C HDD(EMI)	Intel EMC	09/04/2000
Traveling Disk(EMS)	Intel EMC	09/04/2000
LAN	ping.exe	
Speaker/microphone	Windows Media Player	10/11/2016
Modem	Intel EMC	09/04/2000

Description	Path	Length	Shielding	Core	Remark
AC Power Cord	100V (~240V) to EUT ADAPTER	1.8m	No	No	
USB Cable*6	AKiTiO Type-C HDD(EMI) to EUT USB 3.0Port	1.27m	Yes	No	
USB Cable*6	Traveling Disk(EMS) to EUT USB 3.0Port	1.0m	Yes	No	
Keyboard Cable	PS/2 Keyboard to EUT PS/2 Keyboard Port	1.8m	Yes	No	
Mouse Cable	PS/2 Mouse to EUT PS/2 Mouse Port	1.8m	Yes	No	
Display Cable	LCD Monitor to EUT Display Port	1.8m	Yes	No	
DVI Cable	LCD Monitor to EUT DVI Port	1.8m	Yes	Yes	
Audio Cable*2	Speaker/microphone to EUT Audio Port	1.4m	No	No	
COM Cable*2	Modem to EUT COM Port	1.8m	Yes	No	
LAN Cable*4	Personal Computer LAN Port to EUT LAN Port	10m	No	No	Cat 5e

1.6 I/O Cable Condition of EUT and Support Units



-10 of 82-

2. Power Main Port Conducted Emissions

2.1 Test Setup and Procedure

2.1.1 Test Setup

2.1.2 Test Procedure

The measurements are performed in a shielded room test site. The EUT was placed on non-conduction 1.0m x 1.5m table, which is 0.8 meters above an earth-grounded.

Power to the EUT was provided through the LISN which has the Impedance (50ohm/50uH) vs. Frequency Characteristic in accordance with the standard. Power to the LISNs were filtered to eliminate ambient signal interference and these filters were bonded to the ground plane. Peripheral equipment required to provide a functional system (support equipment) for EUT testing was powered from the second LISN through a ganged, metal power outlet box which is bonded to the ground plane at the LISN.

The interconnecting cables were arranged and moved to get the maximum measurement. Both the line of power cord, live and neutral, were measured. All of the interface cables were manipulated according to EN 55032 requirements.

The highest emissions were analyzed in details by operating the spectrum analyzer in fixed tuned mode to determine the nature of the emissions and to provide information which could be useful in reducing their amplitude.

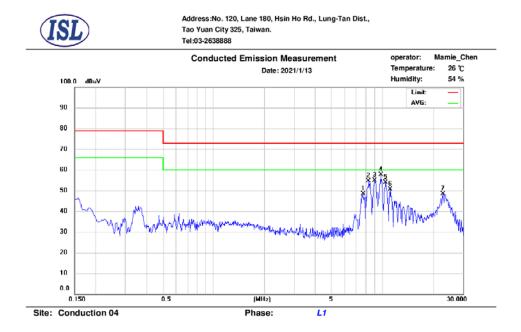
2.1.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)

Frequency Range:	150kHz30MHz
Detector Function:	Quasi-Peak / Average Mode
Resolution Bandwidth:	9kHz

2.1.4 Limit

Conducted emissions from the AC mains power ports of Class_A equipment:

Frequency	QP	AV					
MHz	dB(µV)	dB(µV)					
0.15-0.50	79	66					
0.50-30 73 60							
Note: The lower limit shall apply at the transition frequencies							


Conducted emissions from the AC mains power ports of Class_B equipment:

Frequency	QP	AV						
MHz	dB(µV)	dB(µV)						
0.15-0.50	66-56	56-46						
0.50-5.0	56	46						
5.0-30 60 50								
Note: The lower limit shall apply at the transition frequencies								

2.2 Conduction Test Data: Configuration 1

No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	7.690	32.72	25.89	9.81	42.53	73.00	-30.47	35.70	60.00	-24.30
2	8.298	37.96	31.14	9.83	47.79	73.00	-25.21	40.97	60.00	-19.03
3	8.998	37.72	30.75	9.84	47.56	73.00	-25.44	40.59	60.00	-19.41
4	9.770	39.01	32.11	9.87	48.88	73.00	-24.12	41.98	60.00	-18.02
5	10.482	36.70	29.97	9.87	46.57	73.00	-26.43	39.84	60.00	-20.16
6	11.186	32.61	25.90	9.88	42.49	73.00	-30.51	35.78	60.00	-24.22
7	22.886	31.94	25.82	9.97	41.91	73.00	-31.09	35.79	60.00	-24.21

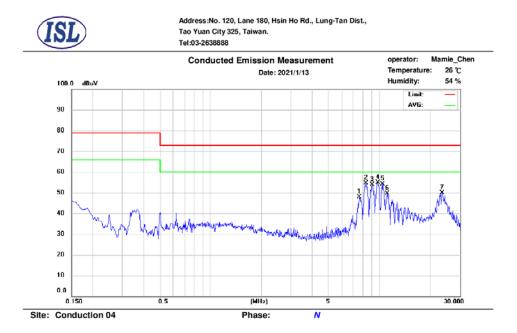
Note:

Margin = QP/AVG Emission - Limit

QP/AVG Emission = QP_R/AVG_R + Correct Factor

Correct Factor = LISN Loss + Cable Loss

A margin of -8dB means that the emission is 8dB below the limit


The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.

If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.

International Standards Laboratory Corp.

- Neutral

No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	7.606	31.95	24.83	9.85	41.80	73.00	-31.20	34.68	60.00	-25.32
2	8.338	38.43	31.39	9.86	48.29	73.00	-24.71	41.25	60.00	-18.75
3	9.074	38.32	31.58	9.88	48.20	73.00	-24.80	41.46	60.00	-18.54
4	9.838	38.74	32.12	9.91	48.65	73.00	-24.35	42.03	60.00	-17.97
5	10.498	37.00	30.48	9.92	46.92	73.00	-26.08	40.40	60.00	-19.60
6	11.174	32.73	26.24	9.93	42.66	73.00	-30.34	36.17	60.00	-23.83
7	23.586	32.94	26.54	10.15	43.09	73.00	-29.91	36.69	60.00	-23.31

Note:

Margin = QP/AVG Emission - Limit

QP/AVG Emission = QP_R/AVG_R + Correct Factor

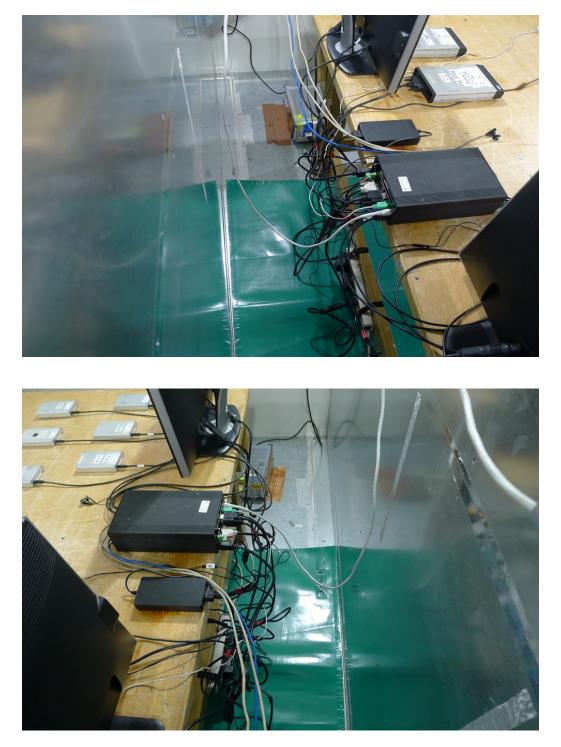
Correct Factor = LISN Loss + Cable Loss

A margin of -8dB means that the emission is 8dB below the limit

The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.

If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.

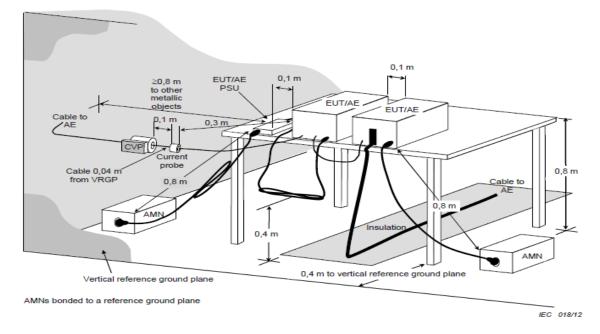
International Standards Laboratory Corp.


2.3 Test Setup Photo

Front View

Back View

International Standards Laboratory Corp.



-16 of 82-

3. Telecommunication Port Conducted Emissions

3.1 Test Setup and Procedure

3.1.1 Test Setup

3.1.2 Test Procedure

The measurements are performed in a shielded room test site. The EUT was placed on non-conduction 1.0m x 1.5m table, which is 0.8 meters above an earth-grounded.

The EUT, any support equipment, and any interconnecting cables were arranged and moved to get the maximum measurement. All of the interface cables were manipulated according to EN 55032 requirements.

The port of the EUT was connected to the support equipment through the ISN and linked in normal condition.

AC input power for the EUT & the support equipment power outlets were obtained from the same filtered source that provided input power to the LISN.

The highest emissions were analyzed in details by operating the spectrum analyzer in fixed tuned mode to determine the nature of the emissions and to provide information could be useful in reducing their amplitude.

3.1.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)

Frequency Range:	150kHz30MHz
Detector Function:	Quasi-Peak / Average Mode
Resolution Bandwidth:	9kHz

3.1.4 Limit

Asymmetric mode conducted emissions from Class_A equipment: Applicable to

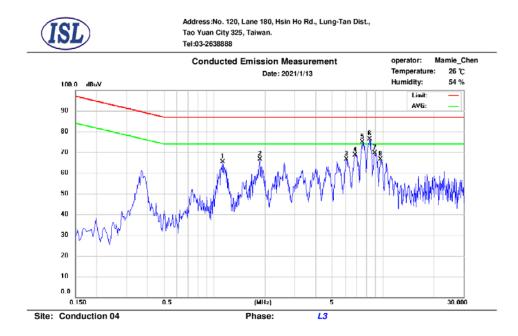
1. wired network ports.

2. optical fibre ports with metallic shield or tension members.

3. antenna ports.

Frequency range MHz	Coupling device	pling device Detector type / bandwidth		Class_A current limits dB(µA)
0.15-0.5	AAN	Quasi Peak / 9 kHz	97-87	
0.5-30			87	n/a
0.15-0.5	AAN	Average / 9 kHz	84-74	11/ a
0.5-30		Average /) KHZ	74	
0.15-0.5	CVP	Quasi Peak / 9 kHz	97-87	53-43
0.5-30	and current probe	Quasi Peak / 9 KHZ	87	43
0.15-0.5	CVP	Avorago / 0 kHz	84-74	40-30
0.5-30	and current probe	Average / 9 kHz	74	30
0.15-0.5	Current Probe	Quasi Daak / 0 kHz		53-43
0.5-30	Current Probe	Quasi Peak / 9 kHz	n /o	43
0.15-0.5	Current Probe	Average / 0 kHz	n/a	40-30
0.5-30	Current Probe	Average / 9 kHz		30

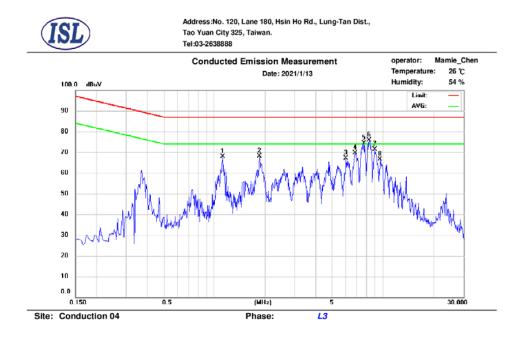
Asymmetric mode conducted emissions from Class_B equipment:


Applicable to:

- 1. wired network ports.
- 2. optical fibre ports with metallic shield or tension members.
- 3. broadcast receiver tuner ports.
- 4. antenna ports.

Frequency range MHz	Coupling device	Coupling device Detector type / bandwidth		Class_B current limits dB(µA)	
0.15-0.5	AAN	Quasi Peak / 9 kHz	84-74		
0.5-30			74	n/a	
0.15-0.5	AAN	Average / 9 kHz	74-64	11/ a	
0.5-30	AAN	Average / 9 KHZ	64		
0.15-0.5	CVP	Quasi Peak / 9 kHz	84-74	40-30	
0.5-30	and current probe	Quasi Peak / 9 KHZ	74	30	
0.15-0.5	CVP		74-64	30-20	
0.5-30	and current probe	Average / 9 kHz	64	20	
0.15-0.5	Current Probe	Quesi Deelt / 0 kUz		40-30	
0.5-30	Current Probe	Quasi Peak / 9 kHz	n/a	30	
0.15-0.5	Current Probe	Average / 0 kHz	11/a	30-20	
0.5-30	Current Probe	Average / 9 kHz		20	

3.2 Test Data: LAN1\100M

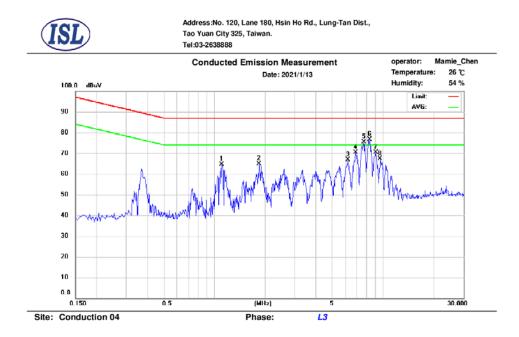

No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	1.118	50.29	39.92	9.60	59.89	87.00	-27.11	49.52	74.00	-24.48
2	1.862	49.09	39.15	9.59	58.68	87.00	-28.32	48.74	74.00	-25.26
3	6.082	48.73	40.61	9.60	58.33	87.00	-28.67	50.21	74.00	-23.79
4	6.838	52.60	45.10	9.61	62.21	87.00	-24.79	54.71	74.00	-19.29
5	7.542	57.02	49.63	9.61	66.63	87.00	-20.37	59.24	74.00	-14.76
6	8.330	60.17	53.01	9.63	69.80	87.00	-17.20	62.64	74.00	-11.36
7	8.946	53.93	46.84	9.64	63.57	87.00	-23.43	56.48	74.00	-17.52
8	9.682	49.88	42.76	9.65	59.53	87.00	-27.47	52.41	74.00	-21.59

Note :

Margin = QP/AVG Emission – LimitQP/AVG Emission = QP_R/AVG_R + Correct FactorCorrect Factor = LISN Loss + Cable LossA margin of -8dB means that the emission is 8dB below the limitThe frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.

3.3 Test Data: LAN1\10M

No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	1.118	50.27	39.16	9.60	59.87	87.00	-27.13	48.76	74.00	-25.24
2	1.858	51.12	40.21	9.59	60.71	87.00	-26.29	49.80	74.00	-24.20
3	6.050	48.51	39.90	9.60	58.11	87.00	-28.89	49.50	74.00	-24.50
4	6.838	52.63	44.94	9.61	62.24	87.00	-24.76	54.55	74.00	-19.45
5	7.698	58.10	51.11	9.62	67.72	87.00	-19.28	60.73	74.00	-13.27
6	8.238	59.11	51.81	9.62	68.73	87.00	-18.27	61.43	74.00	-12.57
7	8.962	53.77	46.72	9.64	63.41	87.00	-23.59	56.36	74.00	-17.64
8	9.638	48.79	41.89	9.65	58.44	87.00	-28.56	51.54	74.00	-22.46

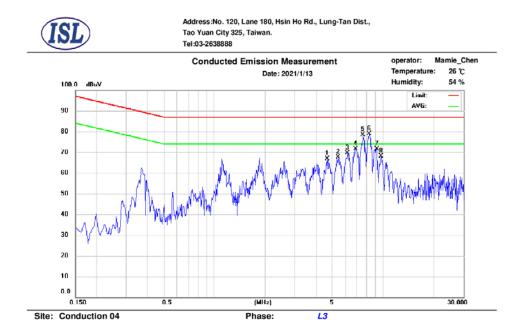

Note :

Margin = QP/AVG Emission – LimitQP/AVG Emission = QP_R/AVG_R + Correct FactorCorrect Factor = LISN Loss + Cable LossA margin of -8dB means that the emission is 8dB below the limitThe frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.

International Standards Laboratory Corp.

3.4 Test Data: LAN1\1G

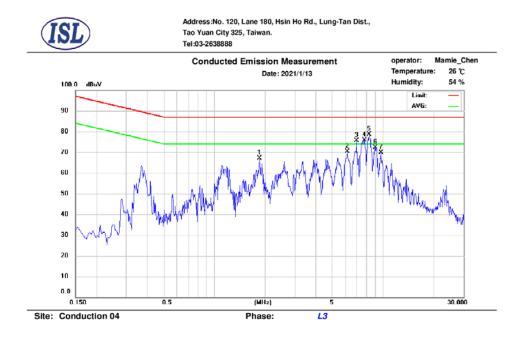
No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	1.102	50.27	45.88	9.60	59.87	87.00	-27.13	55.48	74.00	-18.52
2	1.842	51.85	47.67	9.59	61.44	87.00	-25.56	57.26	74.00	-16.74
3	6.194	50.25	43.89	9.60	59.85	87.00	-27.15	53.49	74.00	-20.51
4	6.878	53.41	46.11	9.61	63.02	87.00	-23.98	55.72	74.00	-18.28
5	7.694	58.31	51.57	9.62	67.93	87.00	-19.07	61.19	74.00	-12.81
6	8.354	60.14	53.24	9.63	69.77	87.00	-17.23	62.87	74.00	-11.13
7	9.070	54.74	47.92	9.64	64.38	87.00	-22.62	57.56	74.00	-16.44
8	9.634	49.50	42.50	9.65	59.15	87.00	-27.85	52.15	74.00	-21.85


Note :

Margin = QP/AVG Emission – LimitQP/AVG Emission = QP_R/AVG_R + Correct FactorCorrect Factor = LISN Loss + Cable LossA margin of -8dB means that the emission is 8dB below the limitThe frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.

International Standards Laboratory Corp.

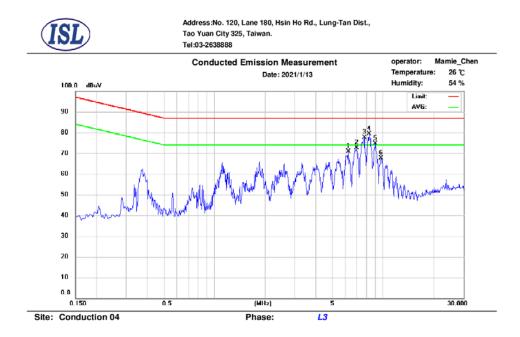
3.5 Test Data: LAN2\100M


No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	4.686	48.96	40.86	9.59	58.55	87.00	-28.45	50.45	74.00	-23.55
2	5.406	50.97	43.21	9.60	60.57	87.00	-26.43	52.81	74.00	-21.19
3	6.166	53.54	46.02	9.60	63.14	87.00	-23.86	55.62	74.00	-18.38
4	6.906	56.58	49.43	9.61	66.19	87.00	-20.81	59.04	74.00	-14.96
5	7.642	61.45	54.42	9.62	71.07	87.00	-15.93	64.04	74.00	-9.96
6	8.298	62.90	55.76	9.63	72.53	87.00	-14.47	65.39	74.00	-8.61
7	9.182	54.19	47.31	9.64	63.83	87.00	-23.17	56.95	74.00	-17.05
8	9.722	52.45	45.20	9.65	62.10	87.00	-24.90	54.85	74.00	-19.15

Note :

Margin = QP/AVG Emission – LimitQP/AVG Emission = QP_R/AVG_R + Correct FactorCorrect Factor = LISN Loss + Cable LossA margin of -8dB means that the emission is 8dB below the limitThe frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.

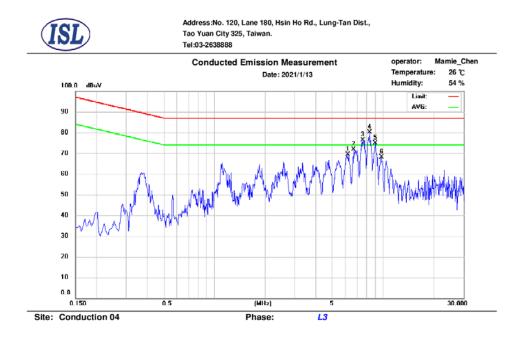
3.6 Test Data: LAN2\10M


No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	1.854	53.57	42.95	9.59	63.16	87.00	-23.84	52.54	74.00	-21.46
2	6.134	53.47	45.26	9.60	63.07	87.00	-23.93	54.86	74.00	-19.14
3	6.974	56.05	48.96	9.61	65.66	87.00	-21.34	58.57	74.00	-15.43
4	7.790	58.68	50.83	9.62	68.30	87.00	-18.70	60.45	74.00	-13.55
5	8.254	62.30	54.84	9.63	71.93	87.00	-15.07	64.47	74.00	-9.53
6	9.022	57.10	49.74	9.64	66.74	87.00	-20.26	59.38	74.00	-14.62
7	9.718	51.76	44.94	9.65	61.41	87.00	-25.59	54.59	74.00	-19.41

Note :

Margin = QP/AVG Emission – LimitQP/AVG Emission = QP_R/AVG_R + Correct FactorCorrect Factor = LISN Loss + Cable LossA margin of -8dB means that the emission is 8dB below the limitThe frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.

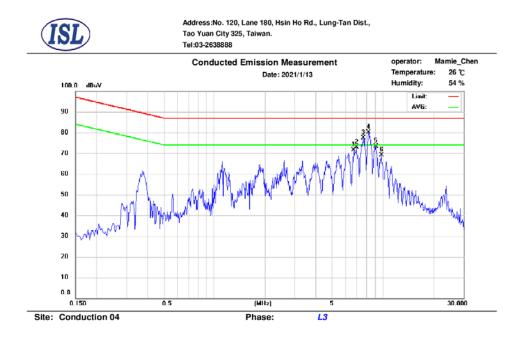
3.7 Test Data: LAN2\1G


No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	6.246	53.01	46.24	9.60	62.61	87.00	-24.39	55.84	74.00	-18.16
2	7.002	55.40	48.31	9.61	65.01	87.00	-21.99	57.92	74.00	-16.08
3	7.730	60.20	53.32	9.62	69.82	87.00	-17.18	62.94	74.00	-11.06
4	8.254	62.55	55.27	9.63	72.18	87.00	-14.82	64.90	74.00	-9.10
5	9.034	57.15	50.17	9.64	66.79	87.00	-20.21	59.81	74.00	-14.19
6	9.738	52.34	45.37	9.65	61.99	87.00	-25.01	55.02	74.00	-18.98

Note :

Margin = QP/AVG Emission – LimitQP/AVG Emission = QP_R/AVG_R + Correct FactorCorrect Factor = LISN Loss + Cable LossA margin of -8dB means that the emission is 8dB below the limitThe frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.

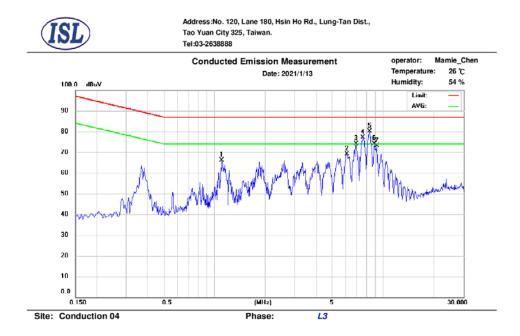
3.8 Test Data: LAN3\100M


No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	6.190	53.70	47.10	9.60	63.30	87.00	-23.70	56.70	74.00	-17.30
2	6.714	53.33	45.75	9.60	62.93	87.00	-24.07	55.35	74.00	-18.65
3	7.630	61.24	54.08	9.62	70.86	87.00	-16.14	63.70	74.00	-10.30
4	8.334	62.73	55.72	9.63	72.36	87.00	-14.64	65.35	74.00	-8.65
5	9.050	57.03	50.08	9.64	66.67	87.00	-20.33	59.72	74.00	-14.28
6	9.766	52.32	45.40	9.66	61.98	87.00	-25.02	55.06	74.00	-18.94

Note :

Margin = QP/AVG Emission – LimitQP/AVG Emission = QP_R/AVG_R + Correct FactorCorrect Factor = LISN Loss + Cable LossA margin of -8dB means that the emission is 8dB below the limitThe frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.

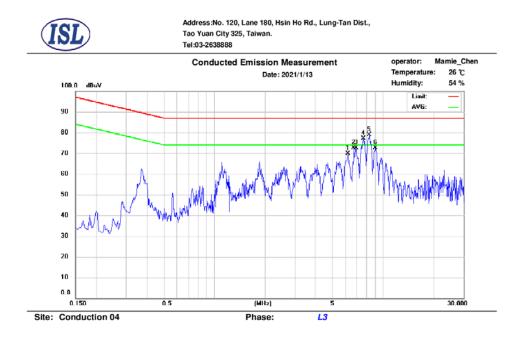
3.9 Test Data: LAN3\10M


No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	6.710	52.58	45.54	9.60	62.18	87.00	-24.82	55.14	74.00	-18.86
2	6.962	56.03	49.07	9.61	65.64	87.00	-21.36	58.68	74.00	-15.32
3	7.650	60.87	53.98	9.62	70.49	87.00	-16.51	63.60	74.00	-10.40
4	8.218	61.91	54.31	9.62	71.53	87.00	-15.47	63.93	74.00	-10.07
5	9.078	56.57	49.82	9.64	66.21	87.00	-20.79	59.46	74.00	-14.54
6	9.770	52.00	45.26	9.66	61.66	87.00	-25.34	54.92	74.00	-19.08

Note :

Margin = QP/AVG Emission – LimitQP/AVG Emission = QP_R/AVG_R + Correct FactorCorrect Factor = LISN Loss + Cable LossA margin of -8dB means that the emission is 8dB below the limitThe frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.

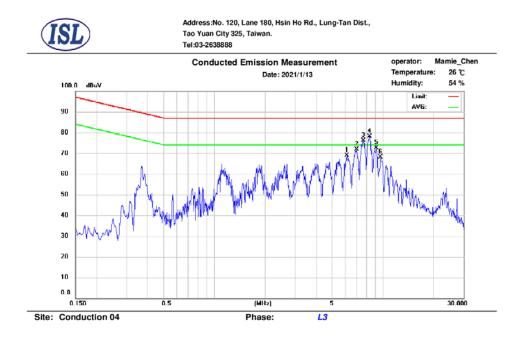
3.10 Test Data: LAN3\1G


No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	1.110	52.78	46.31	9.60	62.38	87.00	-24.62	55.91	74.00	-18.09
2	6.106	52.90	45.14	9.60	62.50	87.00	-24.50	54.74	74.00	-19.26
3	6.926	57.10	50.14	9.61	66.71	87.00	-20.29	59.75	74.00	-14.25
4	7.594	61.30	53.69	9.61	70.91	87.00	-16.09	63.30	74.00	-10.70
5	8.370	62.56	55.65	9.63	72.19	87.00	-14.81	65.28	74.00	-8.72
6	8.910	56.05	49.21	9.64	65.69	87.00	-21.31	58.85	74.00	-15.15
7	9.166	55.10	48.33	9.64	64.74	87.00	-22.26	57.97	74.00	-16.03

Note :

Margin = QP/AVG Emission – LimitQP/AVG Emission = QP_R/AVG_R + Correct FactorCorrect Factor = LISN Loss + Cable LossA margin of -8dB means that the emission is 8dB below the limitThe frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.

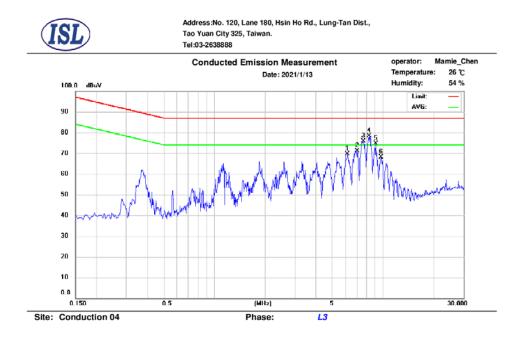
3.11 Test Data: LAN4\100M


No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	6.218	53.23	46.17	9.60	62.83	87.00	-24.17	55.77	74.00	-18.23
2	6.698	52.61	45.31	9.60	62.21	87.00	-24.79	54.91	74.00	-19.09
3	6.926	56.48	49.41	9.61	66.09	87.00	-20.91	59.02	74.00	-14.98
4	7.666	61.05	54.17	9.62	70.67	87.00	-16.33	63.79	74.00	-10.21
5	8.290	62.83	55.68	9.63	72.46	87.00	-14.54	65.31	74.00	-8.69
6	9.054	57.36	50.42	9.64	67.00	87.00	-20.00	60.06	74.00	-13.94

Note :

Margin = QP/AVG Emission – LimitQP/AVG Emission = QP_R/AVG_R + Correct FactorCorrect Factor = LISN Loss + Cable LossA margin of -8dB means that the emission is 8dB below the limitThe frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.B means that the emission is 8dB below the limitIf peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.Correct Pactor

3.12 Test Data: LAN4\10M


No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	6.110	52.49	44.72	9.60	62.09	87.00	-24.91	54.32	74.00	-19.68
2	6.954	55.87	48.85	9.61	65.48	87.00	-21.52	58.46	74.00	-15.54
3	7.650	60.86	54.03	9.62	70.48	87.00	-16.52	63.65	74.00	-10.35
4	8.362	62.38	55.53	9.63	72.01	87.00	-14.99	65.16	74.00	-8.84
5	9.114	56.05	49.15	9.64	65.69	87.00	-21.31	58.79	74.00	-15.21
6	9.654	51.23	44.33	9.65	60.88	87.00	-26.12	53.98	74.00	-20.02

Note :

Margin = QP/AVG Emission – LimitQP/AVG Emission = QP_R/AVG_R + Correct FactorCorrect Factor = LISN Loss + Cable LossA margin of -8dB means that the emission is 8dB below the limitThe frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.

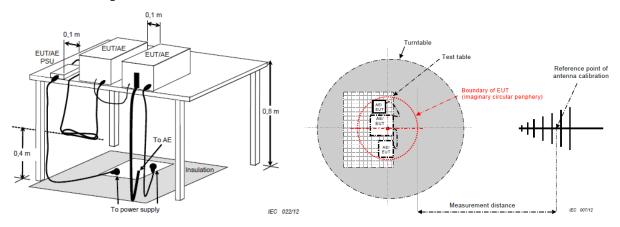
3.13 Test Data: LAN4\1G

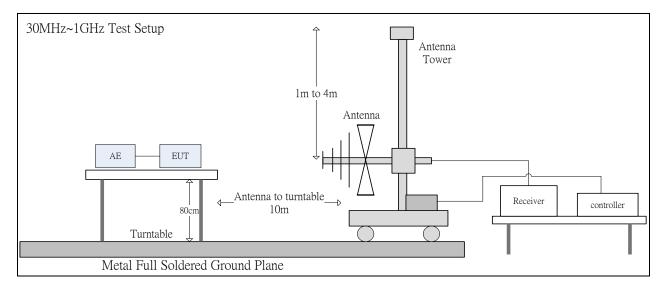
No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	6.166	53.43	46.37	9.60	63.03	87.00	-23.97	55.97	74.00	-18.03
2	7.062	53.60	45.83	9.61	63.21	87.00	-23.79	55.44	74.00	-18.56
3	7.670	61.47	54.24	9.62	71.09	87.00	-15.91	63.86	74.00	-10.14
4	8.258	62.68	55.42	9.63	72.31	87.00	-14.69	65.05	74.00	-8.95
5	9.074	56.99	50.13	9.64	66.63	87.00	-20.37	59.77	74.00	-14.23
6	9.750	52.59	45.64	9.65	62.24	87.00	-24.76	55.29	74.00	-18.71

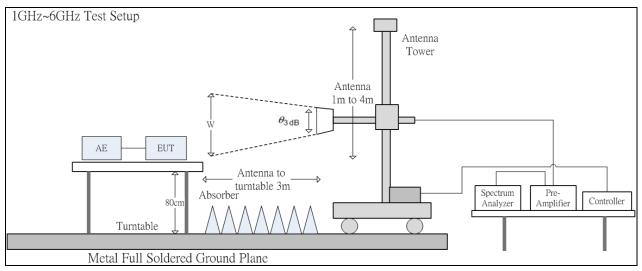
Note :

Margin = QP/AVG Emission – LimitQP/AVG Emission = QP_R/AVG_R + Correct FactorCorrect Factor = LISN Loss + Cable LossA margin of -8dB means that the emission is 8dB below the limitThe frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.B means that the emission is 8dB below the limitIf peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.Correct Pactor

3.14 Test Setup Photo


Refer to the Setup Photos for Power Main Port Conducted Emissions




4. Radiated Disturbance Emissions

4.1 Test Setup and Procedure

4.1.1 Test Setup

International Standards Laboratory Corp.

-32 of 82-

Frequency (GHz)	E-plane	H-plane	^{. θ} ₃dB(min)	d= 3 m
Trequency (OTIZ)	E-plane	11-plane	^{- Sub} (min)	w (m)
1	88°	147°	88°	5.79
2	68°	119°	68°	4.04
3	73°	92°	73°	4.44
4	70°	89°	70°	4.20
5	55°	60°	55°	3.12
6	63°	62°	62°	3.60

The 3dB beam width of the horn antenna used for the test is as shown in the table below.

4.1.2 Test Procedure

The radiated emissions test will then be repeated on the chamber to measure the amplitudes accurately and without the multiple reflections existing in the shielded room. The EUT and support equipment are set up on the turntable of one of 10 meter chamber. Desktop EUT are set up on a FRP stand 0.8 meter above the ground or floor-standing arrangement shall be placed on the horizontal ground reference plane.

For the initial measurements, the receiving antenna is varied from 1-4 meter height and is changed in the vertical plane from vertical to horizontal polarization at each frequency. The highest emissions between 30 MHz to 1000 MHz were analyzed in details by operating the spectrum analyzer and/or EMI receiver in quasi-peak mode to determine the precise amplitude of the emissions. The highest emissions between 1 GHz to 6 GHz were analyzed in details by operating the spectrum analyzer in peak and average mode to determine the precise amplitude of the emissions. The test volume for a height of up to 30 cm may be obstructed by absorber placed on the ground plane.

At the highest amplitudes observed, the EUT is rotated in the horizontal plane while changing the antenna polarization in the vertical plane to maximize the reading. The interconnecting cables were arranged and moved to get the maximum measurement. Once the maximum reading is obtained, the antenna elevation and polarization will be varied between specified limits to maximize the readings. All of the interface cables were manipulated according to EN 55032 requirements.

The highest internal source of an EUT is defined as the highest frequency generated or used within the EUT or on which the EUT operates or tunes.

If the highest frequency of the internal sources of the EUT is less than 108 MHz, the measurement shall only be made up to 1 GHz.

If the highest frequency of the internal sources of the EUT is between 108 MHz and 500 MHz, the measurement shall only be made up to 2 GHz.

If the highest frequency of the internal sources of the EUT is between 500 MHz and 1 GHz, the measurement shall only be made up to 5 GHz.

If the highest frequency of the internal sources of the EUT is above 1 GHz, the measurement shall be made up to 5 times the highest frequency or 6 GHz, whichever is less.

-33 of 82-

4.1.3 Spectrum Analyzer Configuration (for the frequencies tested)

Frequency Range:	30MHz1000MHz
Detector Function:	Quasi-Peak Mode
Resolution Bandwidth:	120kHz
Frequency Range:	Above 1 GHz to 6 GHz
Detector Function:	Peak/Average Mode
Resolution Bandwidth:	1MHz

4.2 Limit

Radiated emissions at frequencies up to 1 GHz for Class_A equipment:

Eraguanay ranga	Measu	rement	Class_A limits $dB(\mu V/m)$				
Frequency range MHz	Distance	Detector type /	OATS/SAC				
	m	bandwidth	on is one				
30-230	10		40				
230-1000	10	Quasi Peak /	47				
30-230	2	120 kHz	50				
230-1000	3		57				

Radiated emissions at frequencies above 1 GHz for Class_A equipment:

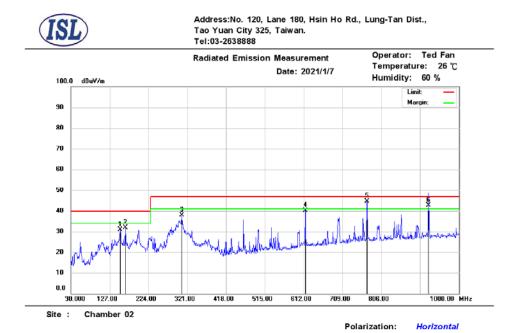
Eroquonou rongo	Measu	rement	Class_A limits dB(µV/m)
Frequency range MHz	Distance m	Detector type / bandwidth	FSOATS
1000-3000		Average /	56
3000-6000	2	1MHz	60
1000-3000	3	Peak /	76
3000-6000		1MHz	80

Radiated emissions at frequencies up to 1 GHz for Class_B equipment:

Eraguanay ranga	Measu	rement	Class_B limits dB(µV/m)
Frequency range MHz	Distance m	Detector type / bandwidth	OATS/SAC
30-230	10		30
230-1000	10	Quasi Peak /	37
30-230	2	120 kHz	40
230-1000	3		47

Eroquonov rongo	Measu	rement	Class_B limits dB(µV/m)	
Frequency range MHz	Distance m	Detector type / bandwidth	FSOATS	
1000-3000		Average /	50	
3000-6000	2	1MHz	54	
1000-3000	3	Peak /	70	
3000-6000		1MHz	74	

Radiated emissions at frequencies above 1 GHz for Class_B equipment:


Radiated emissions from FM receivers:

F	Μ	leasurement	Class_B limits $dB(\mu V/m)$		
Frequency range MHz	Distance	Detector type /	Fundamental	Harmonics	
IVITIZ	m	bandwidth	OATS/SAC	OATS/SAC	
30-230				42	
230-300	10		50	42	
300-1000		Quasi Peak /		46	
30-230		120 kHz		52	
230-300	3		60	52	
300-1000				56	

4.3 Radiation Test Data: Configuration 1

- Radiated Emissions (Horizontal)

Mk.	Frequency (MHz)	RX_R (dBuV)	Correct Factor(dB/m)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
1	153.19	46.73	-15.80	30.93	40.00	-9.07	400	255	peak
2	166.77	47.77	-15.82	31.95	40.00	-8.05	400	255	peak
3	307.42	51.86	-13.96	37.90	47.00	-9.10	400	27	peak
4	615.88	45.87	-5.79	40.08	47.00	-6.92	400	357	peak
5	770.11	47.67	-3.13	44.54	47.00	-2.46	400	224	peak
6	924.00	43.97	-1.32	42.65	47.00	-4.35	400	177	QP

* Note:

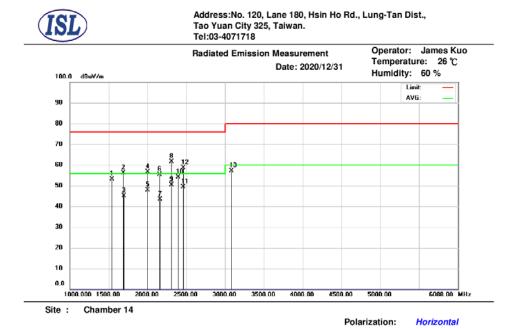
Margin = Emission – Limit

Emission = Radiated Amplitude + Correct Factor

Correct Factor = Antenna Correction Factor + Cable Loss - Pre-Amplifier Gain

A margin of -8dB means that the emission is 8dB below the limit

Antenna Distance: 10 meters


Below 1GHz test, if the peak measured value meets the QP limit, it is unnecessary to perform the QP measurement.

International Standards Laboratory Corp.

Report Number: ISL-21LE080CE-MA

-36 of 82-

Mk.	Frequency (MHz)	RX_R (dBuV)	Correct Factor(dB/m)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
1	1540.00	69.48	-16.42	53.06	76.00	-22.94	199	11	peak
2	1690.00	70.99	-14.97	56.02	76.00	-19.98	189	238	peak
3	1693.90	60.10	-14.93	45.17	56.00	-10.83	190	240	AVG
4	2000.00	69.29	-12.68	56.61	76.00	-19.39	100	73	peak
5	2001.91	60.53	-12.67	47.86	56.00	-8.14	101	70	AVG
6	2155.00	67.73	-12.41	55.32	76.00	-20.68	185	274	peak
7	2155.59	55.86	-12.41	43.45	56.00	-12.55	186	278	AVG
8	2310.00	73.70	-12.17	61.53	76.00	-14.47	100	85	peak
9	2310.00	62.63	-12.17	50.46	56.00	-5.54	101	81	AVG
10	2395.00	66.11	-11.94	54.17	76.00	-21.83	100	278	peak
11	2464.23	60.80	-11.51	49.29	56.00	-6.71	158	323	AVG
12	2465.00	70.21	-11.50	58.71	76.00	-17.29	158	319	peak
13	3080.00	67.67	-10.48	57.19	80.00	-22.81	208	50	peak

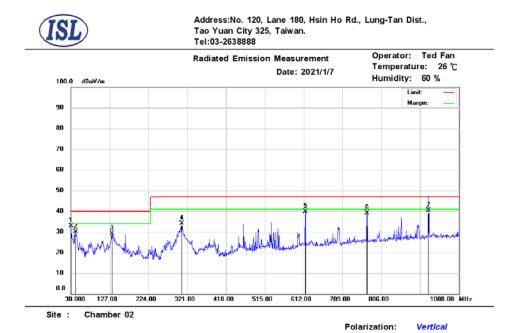
* Note:

Margin = Emission – Limit

Emission = Radiated Amplitude + Correct Factor

Correct Factor = Antenna Correction Factor + Cable Loss - Pre-Amplifier Gain

A margin of -8dB means that the emission is 8dB below the limit


Antenna Distance: 3 meters

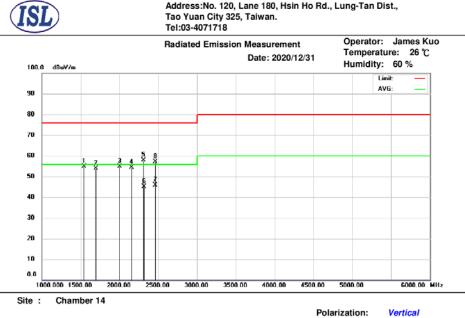
Above 1GHz test, if the peak measured value meets the average limit, it is unnecessary to perform the average measurement.

-37 of 82-

-Radiated Emissions (Vertical)

Mk.	Frequency (MHz)	RX_R (dBuV)	Correct Factor(dB/m)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
1	30.00	51.73	-18.81	32.92	40.00	-7.08	400	20	peak
2	41.64	47.54	-17.49	30.05	40.00	-9.95	400	209	peak
3	132.82	46.24	-17.12	29.12	40.00	-10.88	400	246	peak
4	307.42	48.14	-13.96	34.18	47.00	-12.82	400	0	peak
5	615.88	45.79	-5.79	40.00	47.00	-7.00	400	163	peak
6	770.11	42.23	-3.13	39.10	47.00	-7.90	400	257	peak
7	924.00	41.58	-1.32	40.26	47.00	-6.74	313	42	QP

* Note: Margin = Emission – Limit Emission = Radiated Amplitude + Correct Factor Correct Factor = Antenna Correction Factor + Cable Loss – Pre-Amplifier Gain A margin of -8dB means that the emission is 8dB below the limit Antenna Distance: 10 meters


Below 1GHz test, if the peak measured value meets the QP limit, it is unnecessary to perform the QP measurement.

International Standards Laboratory Corp.

Report Number: ISL-21LE080CE-MA

-38 of 82-

Address:No. 120, Lane 180, Hsin Ho Rd., Lung-Tan Dis	t.,
Tao Yuan City 325, Taiwan.	

Mk.	Frequency (MHz)	RX_R (dBuV)	Correct Factor(dB/m)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
1	1540.00	71.26	-16.42	54.84	76.00	-21.16	100	191	peak
2	1695.00	68.82	-14.92	53.90	76.00	-22.10	113	144	peak
3	2000.00	67.50	-12.68	54.82	76.00	-21.18	134	186	peak
4	2155.00	66.89	-12.41	54.48	76.00	-21.52	120	291	peak
5	2310.00	70.10	-12.17	57.93	76.00	-18.07	197	320	peak
6	2310.23	57.31	-12.17	45.14	56.00	-10.86	198	324	AVG
7	2463.99	57.36	-11.52	45.84	56.00	-10.16	152	0	AVG
8	2465.00	68.63	-11.50	57.13	76.00	-18.87	153	0	peak

* Note: Margin = Emission - Limit

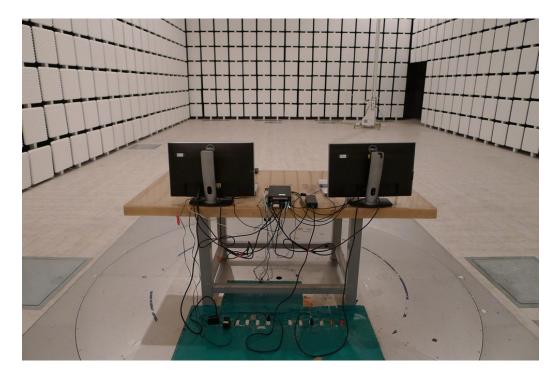
Emission = Radiated Amplitude + Correct Factor

Correct Factor = Antenna Correction Factor + Cable Loss - Pre-Amplifier Gain

A margin of -8dB means that the emission is 8dB below the limit

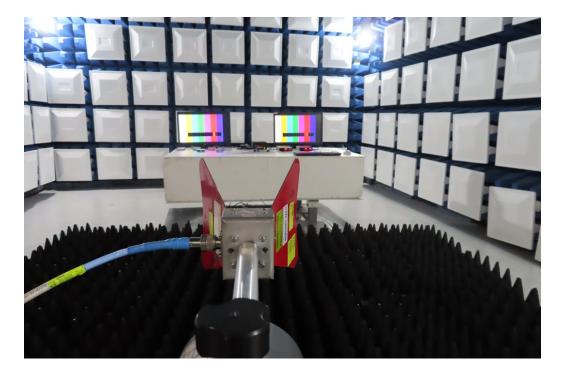

Antenna Distance: 3 meters

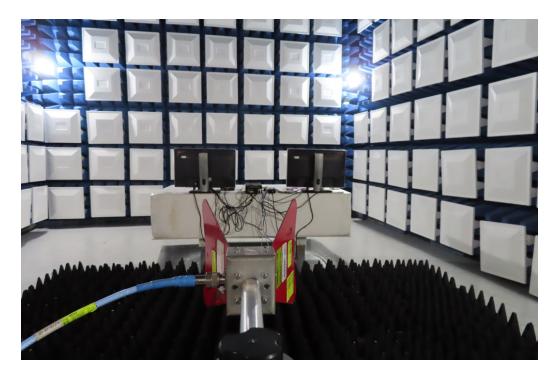
Above 1GHz test, if the peak measured value meets the average limit, it is unnecessary to perform the average measurement.



4.4 Test Setup Photo

Front View (30MHz~1GHz)


Back View (30MHz~1GHz)

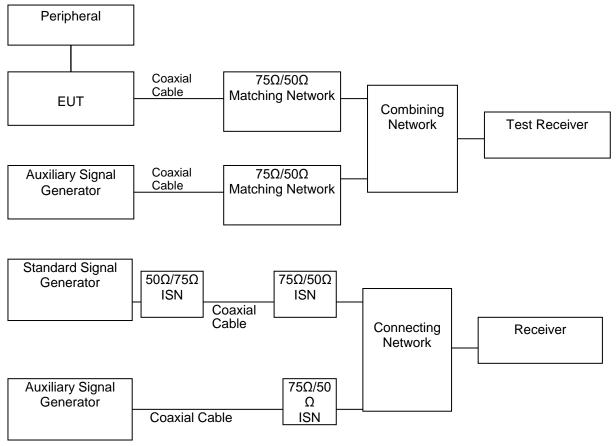

International Standards Laboratory Corp.

Front View (above 1GHz)

Back View (above 1GHz)

International Standards Laboratory Corp.

Report Number: ISL-21LE080CE-MA



-41 of 82-

5. Voltage Disturbance Emissions at Antenna Terminals

5.1 Test Setup and Procedure

5.1.1 Test Setup

5.1.2 Test Procedure

The output level of the auxiliary signal generator was set to 70dBuV at the EUT antenna terminal with 75 ohms impedance with an un-modulated carrier.

The highest emissions were analyzed in details by operating the spectrum analyzer and/or EMI receiver in quasi-peak mode to determine the precise amplitude of the emissions. The power of EUT was switched off to make sure the emission was not contributed by the auxiliary signal generator. While doing so, the interconnecting cables and major parts of the system were moved around to maximize the emission.

5.1.3 EMI Receiver Configuration (for the frequencies tested)

Frequency Range:	30MHz-2150MHz
Detector Function:	Quasi-Peak Mode
Resolution Bandwidth:	120kHz
Resolution Bandwidth:	120kHz

5.1.4 Limit

Applicable to:

- 1. TV broadcast receiver tuner ports with an accessible connector.
- 2. RF modulator output ports.

3. FM broadcast receiver tuner ports with an accessible connector.

Table clause	Frequency range	Detector type/ bandwidth		Class B limi dB(µV) 75 g	Applicability	
MHz			Other	Local Oscillator Fundamental	Local Oscillator Harmonics	
A12.1	30 – 950		46	46	46	See a)
	950 – 2 150	For frequencies ≤1 GHz	46	54	54	
A12.2	950 – 2 150	Quasi Peak/	46	54	54	See b)
A12.3	30 – 300	120 kHz	46	54	50	See c)
	300 – 1 000				52	
A12.4	30 – 300	For frequencies	46	66	59	See d)
	300 – 1 000	≥1 GHz			52	
A12.5	30 – 950	Peak/ 1 MHz	46	76	46	See e)
	950 – 2 150			n/a	54	

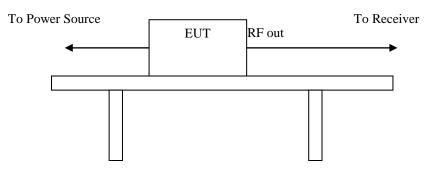
a) Television receivers (analogue or digital), video recorders and PC TV broadcast receiver tuner cards working in channels between 30 MHz and 1 GHz, and digital audio receivers.

b) Tuner units (not the LNB) for satellite signal reception.

c) Frequency modulation audio receivers and PC tuner cards.

d) Frequency modulation car radios.

e) Applicable to EUTs with RF modulator output ports (for example DVD equipment, video recorders, camcorders and decoders etc.) designed to connect to TV broadcast receiver tuner ports.


****Remarks:** It is not necessary to be tested on this item.

6. Differential Voltage Emissions

6.1 Test Setup and Procedure

6.1.1 Test Setup

6.1.2 Test Procedure

The output level of the auxiliary signal generator was set to 70dBuV at the EUT antenna terminal with 75 ohms impedance with an un-modulated carrier.

The highest emissions were analyzed in details by operating the spectrum analyzer and/or EMI receiver in quasi-peak mode to determine the precise amplitude of the emissions. The power of EUT was switched off to make sure the emission was not contributed by the auxiliary signal generator. While doing so, the interconnecting cables and major parts of the system were moved around to maximize the emission.

6.1.3 EMI Receiver Configuration (for the frequencies tested)

Frequency Range:	30MHz-2150MHz
Detector Function:	Quasi-Peak Mode
Resolution Bandwidth:	120kHz

6.1.4 Limit

Applicable to:

- 1. TV broadcast receiver tuner ports with an accessible connector.
- 2. RF modulator output ports.

3. FM broadcast receiver tuner ports with an accessible connector.

Table clause	Frequency range	Detector type/ bandwidth		Class B lim dB(μV) 75 g	Applicability	
	MHz		Other	Local Oscillator Fundamental	Local Oscillator Harmonics	
A12.1	30 – 950		46	46	46	See a)
	950 – 2 150	For frequencies ≤1 GHz	46	54	54	
A12.2	950 – 2 150	Quasi Peak/	46	54	54	See b)
A12.3	30 – 300	120 kHz	46	54	50	See c)
	300 – 1 000				52	
A12.4	30 – 300	For frequencies	46	66	59	See d)
	300 – 1 000	≥1 GHz			52	
A12.5	30 – 950	Peak/ 1 MHz	46	76	46	See e)
	950 – 2 150			n/a	54	

a) Television receivers (analogue or digital), video recorders and PC TV broadcast receiver tuner cards working in channels between 30 MHz and 1 GHz, and digital audio receivers.

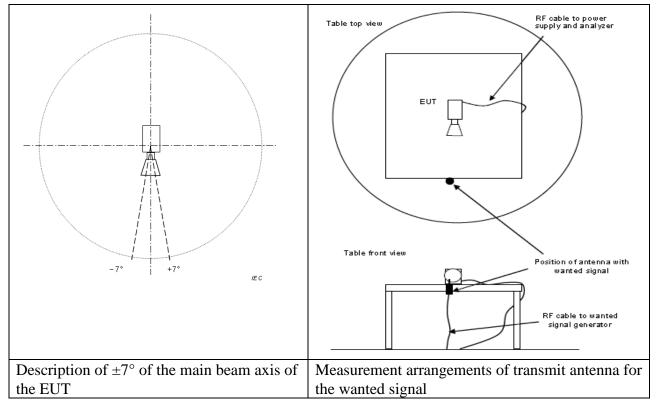
b) Tuner units (not the LNB) for satellite signal reception.

c) Frequency modulation audio receivers and PC tuner cards.

d) Frequency modulation car radios.

e) Applicable to EUTs with RF modulator output ports (for example DVD equipment, video recorders, camcorders and decoders etc.) designed to connect to TV broadcast receiver tuner ports.

****Remarks:** It is not necessary to be tested on this item.



-45 of 82-

7. Outdoor units of home satellite receiving systems

7.1 Test Setup and Procedure

7.1.1 Test Setup

7.1.2 Test Procedure

The input signal shall be adjusted to get the maximum rated output level from the EUT. For the measurement in the frequency range from 30 MHz to 18 GHz the input signal shall be adjusted so that the output frequency is within this frequency range. For the measurement in the frequency range above 1 GHz, the frequency of the input signal shall be adjusted in such a way that the EUT is measured, as a minimum, at the lowest, middle and highest rated output frequency within the measured frequency range.

7.1.3 Spectrum Analyzer Configuration (for the frequencies tested)

Frequency Range:	30MHz1000MHz
Detector Function:	Quasi-Peak Mode
Resolution Bandwidth:	120kHz
Frequency Range:	Above 1000MHz
Detector Function:	Peak/Average Mode
Resolution Bandwidth:	1MHz

7.1.4 Limit

Table	Frequency		Measureme	nt	Class B	Applicable to				
Clause	Range MHz				Limits					
A7.1	30 to 1 000	SAC / OATS / FAR	See Table A.4	Quasi Peak / 120 kHz	See Table A.4					
A7.2	1 000 to 2 500	FSOATS	3	Average / 1 MHz	50 dB(µV/m)	LO leakage and spurious radiated				
	2 500 to 18 000				64 dB(μV/m)	emissions from the EUT, in the region outside ±7° of the main beam axis. See Figure H.1				
A7.3	1 000 to 18 000	FSOATS	3	Average / 1 MHz	37 dB(µV/m)	LO leakage from the EUT, in the region within				
A7.4	1 000 to 18 000	Conducted (Clause H.4)	n/a	Average / 1 MHz	30 d BpW	±7° of the main beam axis. See Figure H.1				
For detai	For details of the EUT configuration, see Annex H.									
For radiat satisfied.	For radiated emissions measurements at frequencies up to 1 GHz, the requirements defined in Table A.4 shall be satisfied.									
Apply the	e appropriate limits a	across the entire fr	equency rang	ge.						
Apply the	limits defined in tab	le Clause A7.1 and	I A7.2. Also a	apply the limits define	d in either ta	ble Clause A7.3 or A7.4.				

****Remarks:** It is not necessary to be tested on this item.

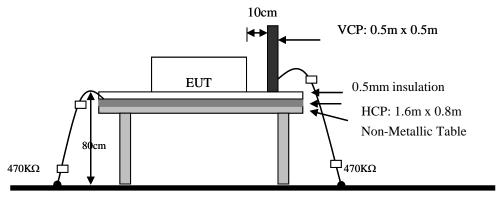
-47 of 82-

8. Electrostatic discharge (ESD) immunity

8.1 Test Specification and Setup

8.1.1 Test Specification

Port:	Enclosure
Basic Standard:	EN 61000-4-2/ IEC 61000-4-2
	(details referred to Sec 1.2)
Test Level:	Air +/- 2 kV, +/- 4 kV, +/- 8 kV
	Contact +/- 4 kV
Criteria:	В
Test Procedure	refer to ISL QA -T4-E-S7


Selected Test Point

- Air: discharges were applied to slots, aperture or insulating surfaces. 10 single air discharges were applied to each selected points.
- Contact: Total 200 discharges minimum were to the selected contact points.

Indirect Contact Points: 25 discharges were applied to center of one edge of VCP and each EUT side of HCP with 10 cm away from EUT.

8.1.2 Test Setup

EUT is 1m from the wall and other metallic structure. When Battery test mode is needed, a cable with one $470K\Omega$ resister at two rare ends is connected from metallic part of EUT and screwed to HCP.

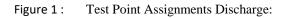
Ground reference Plane

8.1.3 Test Result

Performance of EUT complies with the given specification

8.2 Test Data: Configuration

8.2 Test Data: C		0							_	
Basic Standard EN 61000-4-2								Date		
EUT Model Name		LPC-49			2021-01-11					
Adapter			del:FSP180)-AAA	Engineer					
Barometer Pressure		99.9kPa	Ļ							SAWYER
Temperature		20°C							Equipment &	& Test Site
Humidity		40%							EM T	EST(Model: Dito)
Voltage/Freq.		230 Vac	c/50Hz							ESD 2F
A=criteria A, B=crit	teria	B, C=c	riteria C							
→Blue arrow repre	esent	Air dis	charge poir	nt						
→Red arrow repre	sent	Contact	discharge	point						
ND=No Discharge;	Meet	s criter	ia but unab	le to ol	otain an	elect	rostatic	c dis	charge (ESD) at this test point.
X=EUT DOES NOT										-
A=criteria A, B=crit	teria	B, C=c	riteria C							
Contact Discharge				V	oltage l	kV 25	Discha	rge (@ 1 PPS	
Test Location	+4	-4								Comments
1	Α	Α								
2	Α	Α								
3	Α	Α								
4	Α	А								
5	Α	Α								
6	В	В								Note1
7	В	В								Note1
8	В	В								Note1
9	Α	Α								
10	Α	Α								
11	Α	Α								
12	Α	Α								
13	Α	Α								
14	Α	Α								
15	A	Α								
16	Α	Α								
17	A	Α								
18	Α	Α								
19	Α	A								
20	Α	A								
21	Α	Α								
22	A	A								
23	Α	A								
24	В	В								Note1
25	В	В								Note1
26	В	В								Note1
27	В	В								Note1
28	В	В								Note1


-49 of 82-

Air Discharge	Voltage kV 10 Discharge @ 1 PPS										
Test Location	+2	-2	+4	-4	+8	-8					Comments
1	ND	ND	Α	Α	Α	Α					
2	ND	ND	А	А	Α	А					
3	ND	ND	А	Α	Α	Α					
4	ND	ND	А	Α	Α	А					
5	ND	ND	Α	Α	Α	Α					
6	ND	ND	Α	Α	Α	Α					
7	ND	ND	Α	Α	Α	Α					
8	ND	ND	Α	Α	Α	Α					
9	ND	ND	Α	Α	Α	Α					
10	ND	ND	Α	Α	Α	Α					
11	ND	ND	Α	Α	Α	Α					
12	ND	ND	А	Α	Α	Α					
13	ND	ND	Α	Α	Α	Α					
14	ND	ND	Α	Α	Α	Α					
15	ND	ND	Α	Α	Α	Α					
Indirect Discharge					V	oltage	kV 25	Disch	arge @	0 1 PPS	
Test Location	+4	-4									Comments
VCP Front	Α	Α									
VCP Right	Α	Α									
VCP Left	Α	Α									
VCP Back	Α	Α									
Test Location	+4	-4									Comments
HCP Front	Α	Α									
HCP Right	Α	Α									
HCP Left	Α	Α									
HCP Back	Α	Α									
Additional Notes: A											
Note1: LAN link fun	ction e	rror, bi	ut it ca	n recov	ver aut	omatic	ally.				

8.3 Test Point

Red arrow lines indicate the contact points, and blue arrow lines indicate the air points.

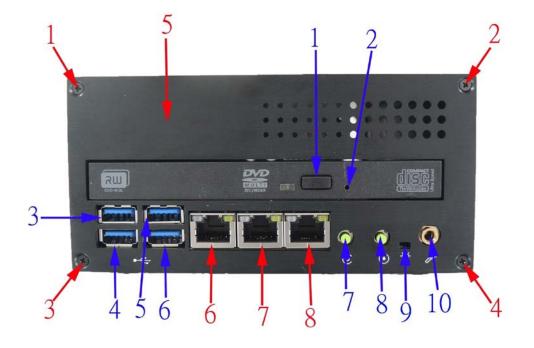


Figure 2 : Test Point Assignments Discharge:

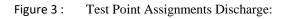
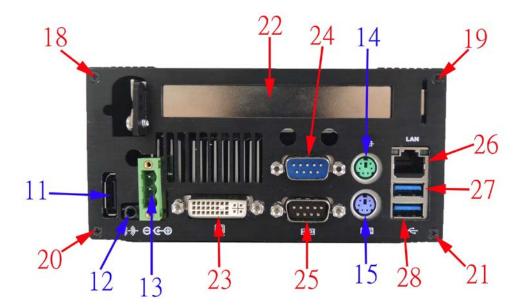
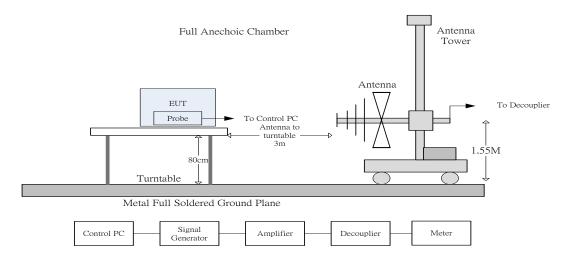



Figure 4 : Test Point Assignments Discharge:

International Standards Laboratory Corp.

8.4 Test Setup Photo

9. Radio-Frequency, Electromagnetic Field immunity


9.1 Test Specification and Setup

9.1.1 Test Specification

Port:	Enclosure
Basic Standard:	EN 61000-4-3/ IEC 61000-4-3
	(details referred to Sec 1.2)
Test Level:	3 V/m
Modulation:	AM 1kHz 80%
Frequency range:	80 MHz~1 GHz
Frequency Step:	1% of last step frequency
Dwell time:	2s
Polarization:	Vertical and Horizontal
EUT Azimuth Angle	$\boxtimes 0^{\circ} \boxtimes 90^{\circ} \boxtimes 180^{\circ} \boxtimes 270^{\circ}$
Criteria:	А
Test Procedure	refer to ISL QA -T4-E-S8

9.1.2 Test Setup

The field sensor is placed at one calibration grid point to check the intensity of the established fields on both polarizations. EUT is adjusted to have each side of EUT face coincident with the calibration plane. A CCD camera and speakers are used to monitor the condition of EUT for the performance judgment.

9.1.3 Test Result

Performance of EUT complies with the given specification

Basic Standa	ird	EN 61000-4-3	}		Date	Date				
EUT Model Name LPC-49xxxx							2021-01-04			
Power FSP(Model:FSP180-AAAN3)							eer			
Barometer P	ressure	102.3kPa					SAW	/YER		
Temperature		23°C				Equip	ment & Test	Site		
Humidity		56%					Cham	ber 04		
Voltage/Freq	Į.	230 Vac/50Hz	Z							
A=criteria A	A, B=criteria	n B, C=criteria	C							
EUT	Free	quency	Dwell		Level	Antenna	EUT	_		
Angle	Range (MHz)	Steps %	time	Modulation	(V/m)	Polarizatio		Comments		
0°(front)	80-1000	1	2s	80% @ 1kHz	3	Vertical	А			
90°(left)	80-1000	1	2s	80% @ 1kHz	3	Vertical	А			
180°(back)	80-1000	1	2s	80% @ 1kHz	3	Vertical	А			
270°(right)	80-1000	1	2s	80% @ 1kHz	3	Vertical	А			
0°(front)	80-1000	1	2s	80% @ 1kHz	3	Horizonta	1 A			
90°(left)	80-1000	1	2s	80% @ 1kHz	3	Horizonta	1 A			
180°(back)	80-1000	1	2s	80% @ 1kHz	3	Horizonta	1 A			
270°(right)	80-1000	1	2s	80% @ 1kHz	3	Horizonta	1 A			
Additional N	Notes: A=cri	teria A, B=cri	teria B, O	C=criteria C						

9.2 Test Data: Configuration

9.3 Test Setup Photo

-56 of 82-

10. Electrical Fast transients/burst immunity

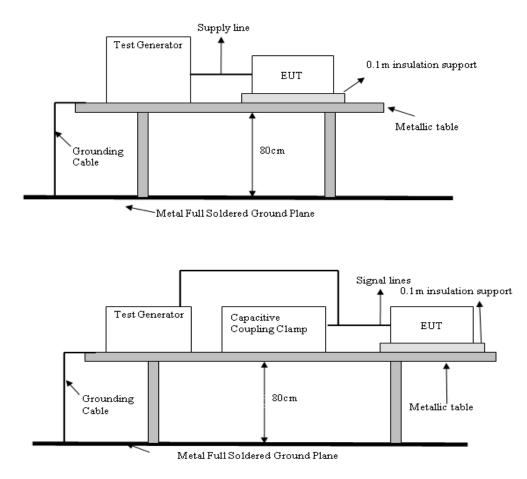
10.1 Test Specification and Setup

10.1.1 Test Specification

Port:	AC mains; Twisted Pair LAN Port
Basic Standard:	EN 61000-4-4/ IEC 61000-4-4
	(details referred to Sec 1.2)
Test Level:	AC Power Port: +/- 1 kV
	Twisted Pair LAN Port (I/O Cables): +/-
	0.5 kV
Rise Time:	5ns
Hold Time:	50ns
Burst Period:	300ms
Repetition Frequency:	5kHz
Criteria:	В
Test Procedure	refer to ISL QA -T4-E-S9

Test Procedure

The EUT was setup on a nonconductive table 0.1 m above a reference ground plane.


Test Points	Polarity	Result	Comment
Line	+	N	60 sec
	-	N	60 sec
Neutral	+	N	60 sec
	-	N	60 sec
Ground	+	N	60 sec
	-	N	60 sec
Line to	+	N	60 sec
Neutral	-	N	60 sec
Line to	+	Ν	60 sec
Ground	-	Ν	60 sec
Neutral to	+	Ν	60 sec
Ground	-	Ν	60 sec
Line to Neutral	+	Ν	60 sec
to Ground	=	Ν	60 sec
Capacitive coupling	+	N	60 sec
clamp	-	N	60 sec

Note: 'N' means normal, the EUT function is correct during the test.

10.1.2 Test Setup

EUT is at least 50cm from the conductive structure.

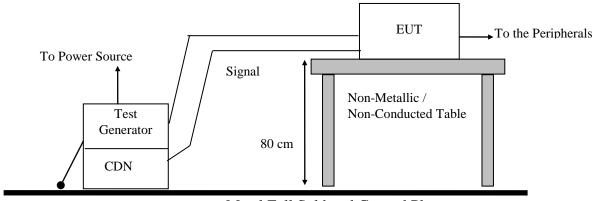
10.1.3 Test Result

Performance of EUT complies with the given specification

Basic Standard		EN 61000-4-4				Date			
EUT Model Name	LPC-49	LPC-49xxxx				2021-01-05			
Power	FSP(M	FSP(Model:FSP180-AAAN3)				Engineer			
Barometer Pressure	102.3kI	Pa				SAWY	ER		
Temperature	25°C				Equipmen	nt & Test S	lite		
Humidity	51%				EM TES	EM TEST (Model: UCS-500 M6B			
Voltage/Freq.	230 Va								
A=criteria A, B=crite	eria B, C=c	riteria C							
AC Power Port: 🗹	DC	Power Por	t: 🗆	LAN Port: 🗹		Telephone Port:			
AC Power Port									
Line Under Test	Voltage	Severity	Pulse	Burst Repetition	Test	EUT	Comments		
	Level	Level	Polarity	Rate	Duration	Status	Comments		
Line	1.0kV	2	+	300ms / 5.0kHz	1 Minutes	А			
Line	1.0kV	2	-	300ms / 5.0kHz	1 Minutes	А			
Neutral	1.0kV	2	+	300ms / 5.0kHz	1 Minutes	Α			
Neutral	1.0kV	2	-	300ms / 5.0kHz	1 Minutes	А			
Ground	1.0kV	2	+	300ms / 5.0kHz	1 Minutes	А			
Ground	1.0kV	2	-	300ms / 5.0kHz 1 Min		А			
Line- Neutral	1.0kV	2	+	300ms / 5.0kHz	1 Minutes	А			
Line- Neutral	1.0kV	2	-	300ms / 5.0kHz	1 Minutes	А			
Line- Ground	1.0kV	2	+	300ms / 5.0kHz	1 Minutes	А			
Line- Ground	1.0kV	2	-	300ms / 5.0kHz	1 Minutes	А			
Neutral - Ground	1.0kV	2	+	300ms / 5.0kHz	1 Minutes	А			
Neutral - Ground	1.0kV	2	-	300ms / 5.0kHz	1 Minutes	А			
Line-Neutral - Ground	1.0kV	2	+	300ms / 5.0kHz	1 Minutes	А			
Line-Neutral - Ground	1.0kV	2	-	300ms / 5.0kHz	300ms / 5.0kHz 1 Minutes				
Signal Port Tested in	Capacitiv	e Clamp							
Line Under Test	Voltage Level	Severity Level	Pulse Polarity	Burst Repetition Rate	Test Duration	EUT Status	Comments		
Capacitive Clamp	0.5kV	2	+	300ms / 5.0kHz	1 Minutes	A			
Capacitive Clamp	0.5kV	2	-	300ms / 5.0kHz	1 Minutes	A			
Additional Notes: A=					1 1011114005	**			

10.2 Test Data: Configuration

10.3 Test Setup Photo


11. Surge Immunity

11.1 Test Specification and Setup

11.1.1 Test Specification

Port:	AC mains			
Basic Standard:	EN 61000-4-5/ IEC 61000-4-5			
	(details referred to Sec 1.2)			
Test Level:	Line to Line:			
	+/- 0.5 kV, +/- 1 kV			
	Line to Earth:			
	+/- 0.5 kV, +/- 1 kV, +/- 2kV			
Rise Time:	1.2us			
Hold Time:	50us			
Repetition Rate:	30 seconds			
Angle:	$\boxtimes 0^{\circ} \boxtimes 90^{\circ} \boxtimes 180^{\circ} \boxtimes 270^{\circ}$			
Criteria:	В			
Test Procedure:	refer to ISL QA -T4-E-S10			

11.1.2 Test Setup

Metal Full Soldered Ground Plane

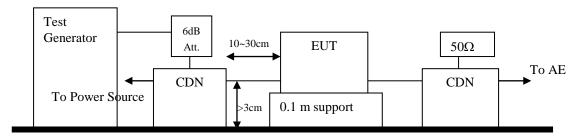
11.1.3 Test Result

Performance of EUT complies with the given specification

11.2 Test Data: Configuration									
Basic Standard		N 61000-4				Date			
EUT Model Name		PC-49xxxy				2021-01-19			
Power			FSP180-AA	AN3)			Engineer		
Barometer Pressure)2.3kPa					SAWYER		
Temperature	2	۱°C				Equipment &	Equipment & Test Site		
Humidity		5%				EM TEST (M	EM TEST (Model: UCS-500 M6B)		
Voltage/Freq.									
A=criteria A, B=c	riteria B			r		1			
AC Power Port: ☑		DC Pow	er Port: 🗆	LAN	Port: 🗆	Tele	Telephone Port: □		
AC Power Port	r		r			r			
Line Under Test	Voltage	e Level	Polarity	Repetition Rate	Cycle	Pulse Position	EUT Status	Comments	
Line-Neutral	0.5kV		+	60 sec	5	0, 90, 180, 270	Α		
Line-Neutral	0.5kV	2	_	60 sec	5	0, 90, 180, 270	Α		
Line-Ground	0.5kV	1	+	60 sec	5	0, 90, 180, 270	Α		
Line-Ground	0.5kV	1		60 sec	5	0, 90, 180, 270	A		
Neutral- Ground	0.5kV	1	+	60 sec	5	0, 90, 180, 270	Α		
Neutral- Ground	0.5kV	1		60 sec	5	0, 90, 180, 270	A		
Line- Neutral	1.0kV	3	+	60 sec	5	0, 90, 180, 270	Α		
Line- Neutral	1.0kV	3		60 sec	5	0, 90, 180, 270	Α		
Line-Ground	1.0kV	2	+	60 sec	5	0, 90, 180, 270	Α		
Line-Ground	1.0kV	2		60 sec	5	0, 90, 180, 270	Α		
Neutral- Ground	1.0kV	2	+	60 sec	5	0, 90, 180, 270	Α		
Neutral- Ground	1.0kV	2		60 sec	5	0, 90, 180, 270	Α		
Line-Ground	2.0kv	3	+	60 sec	5	0, 90, 180, 270	Α		
Line-Ground	2.0kv	3		60 sec	5	0, 90, 180, 270	Α		
Neutral- Ground	2.0kv	3	+	60 sec	5	0, 90, 180, 270	Α		
Neutral- Ground	2.0kv	3	_	60 sec	5	0, 90, 180, 270	Α		
Additional Notes: A=criteria A, B=criteria B, C=criteria C									

11.2 Test Data: Configuration

11.3 Test Setup Photo


12. Immunity to Conductive Disturbance

12.1 Test Specification and Setup

12.1.1 Test Specification

Port:	AC mains; Twisted Pair LAN Port
Basic Standard:	EN 61000-4-6/ IEC 61000-4-6
	(details referred to Sec 1.2)
Test Level:	3 Vrms
Modulation:	AM 1kHz 80%
Frequency range:	0.15 MHz - 80MHz
Frequency Step:	1% of last Frequency
Dwell time:	2s
Criteria:	А
CDN Type:	CDN M2+M3, CDN T4, CDN T8
Test Procedure	refer to ISL QA -T4-E-S11

12.1.2 Test Setup

Reference Ground Plane

12.1.3 Test Result

Performance of EUT complies with the given specification

12.2 Test Data: Con	U	00.4.4					
Basic Standard	EN 610			Date			
EUT Model Name	LPC-49			2021-01-25			
Power	· · · ·	odel:FSP180	-AAAN3)		Engineer		
Barometer Pressure	102.3k	Pa			SAWYER		
Temperature	25°C			Equipment & Test Site			
Humidity	40%				FRANKONIA (Model:		
Voltage/Freq.	230 Va	c/50Hz			CIT-10/75)		
A=criteria A, B=criteria	B, C=criteria C						
AC Power Port							
Line Under Test	Freque Range (MHz)	ency Steps %	Level	Modulation	Dwell time	EUT Status	Comments
AC Power Port	0.15 to 80	1	3V	80% @ 1kHz	2s	А	
Signal & Telecommunica	tion Port			•			•
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Freque	ency		Modulation	Dwell time	EUT Status	Comments
Line Under Test	Range (MHz)	Steps %	Level				
LAN Port 1	0.15 to 80	2	3V	80% @ 1kHz	2s	А	
LAN Port 2	0.15 to 80	2	3V	80% @ 1kHz	2s	А	
LAN Port 3	0.15 to 80	2	3V	80% @ 1kHz	2s	А	
LAN Port 4	0.15 to 80	2	3V	80% @ 1kHz	2s	А	
Additional Notes: A=crite	eria A, B=criteri	ia B, C=crit	eria C				

## **12.2 Test Data: Configuration**

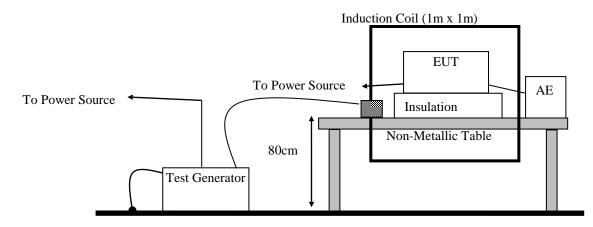


## 12.3 Test Setup Photo





# 13. Power Frequency Magnetic Field immunity


## 13.1 Test Specification and Setup

## **13.1.1** Test Specification

Port:	Enclosure
Basic Standard:	EN 61000-4-8/ IEC 61000-4-8
	(details referred to Sec 1.2)
Test Level:	1A/m
Polarization:	X, Y, Z
Criteria:	Α
Test Procedure	refer to ISL QA -T4-E-S12

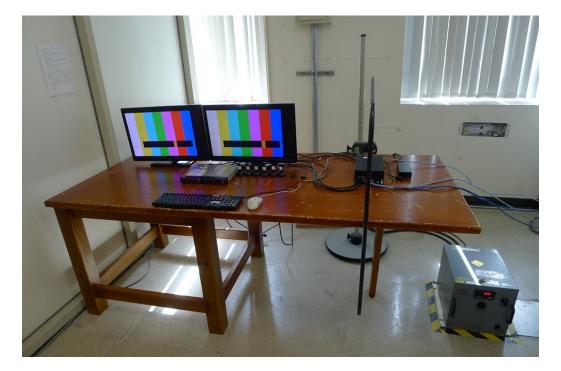
-66 of 82-

## 13.1.2 Test Setup



## 13.1.3 Test Result

Performance of EUT complies with the given specification




## 13.2 Test Data: Configuration

Basic Standard		EN 61000-4-8				Date			
EUT Model Nat	me	LPC-49x	LPC-49xxxx				2021-01-04		
Power		FSP(Mod	lel:FSP180-AAAl	N3)		Engineer			
Barometer Press	sure	102.3kPa				SAWYER			
Temperature		21°C	21°C				Equipment & Test Site		
Humidity		53%	53%				F-1000-4-8-G-125A)		
Voltage/Freq.		230 Vac/.	230 Vac/50Hz				Immunity Loop: FCC (F-100-4-8-L-1M)		
A=criteria A, E	A=criteria A, B=criteria B, C=criteria C								
Antenna Polarization	Freque	ncy (Hz)	Test Level	Test Duration	EU	JT Status	Comment		
X		50	1 A/m	1 Minutes		А			
Y		50	1 A/m	1 Minutes	А				
Z		50	1 A/m	1 Minutes	ites A				
Additional Notes: A=criteria A, B=criteria B, C=criteria C									

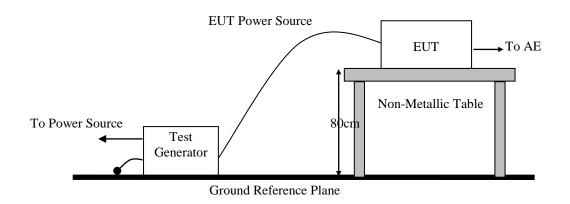


# 13.3 Test Setup Photo





# 14. Voltage Dips, Short Interruption and Voltage Variation immunity


-69 of 82-

# 14.1 Test Specification and Setup

## 14.1.1 Test Specification

Port:	AC mains		
Basic Standard:	EN 61000-4-11/ IEC 61000-4-11		
	(details referred to Sec 1.2)		
Test Level:	>95% in 0.5 period		
Criteria:	В		
Test Level:	30% in 25 period		
Criteria:	С		
Test Level:	>95% in 250 period		
Criteria:	С		
Phase:	0°; 180°		
Test intervals:	3 times with 10s each		
Test Procedure	refer to ISL QA -T4-E-S13		

## 14.1.2 Test Setup



#### 14.1.3 Test Result

Performance of EUT complies with the given specification



# 14.2 Test Data: Configuration

Basic Standard	EN 61000-4-11		Date			
EUT Model Name	LPC-49xxxx			2021	2021-01-04	
Power	FSP(Model:FSP180-	AAAN3)		Engineer	Engineer	
Barometer Pressure	102.3kPa			SAV	WYER	
Temperature	22°C			Equipment & Te	st Site	
Humidity	52%			NOISEKEN (M	Model:VDS-2002)	
Voltage/Freq.	100Vac/50Hz and 24	OVac/50H	Z			
A=criteria A, B=criteria	B, C=criteria C			•		
Voltage / Freq.: 240Vac/						
Voltage Dips Reduction (%		Phase	Test Cycle	EUT Status	Comments	
> 0 <b>5</b> 0/	0.5 period	0°	3	А		
>95%	0.5 period	180°	3	А		
30%	25 period	0°	3	А		
50%	25 period	180°	3	А		
Voltage Interruptions (%)	Duration	Phase	Test Cycle	EUT Status	Comments	
>95%	250 period	0°	3	С	NOTE	
>93%	250 period	180°	3	С	NOTE	
Voltage / Freq.: 100Vac/	50Hz					
Voltage Dips Reduction (9	6) Duration	Phase	Test Cycle	EUT Status	Comments	
>95%	0.5 period	0°	3	А		
>93%	0.5 period	180°	3	А		
30%	25 period	0°	3	А		
3070	25 period	180°	3	А		
Voltage Interruptions (%)	Duration	Phase	Test Cycle	EUT Status	Comments	
>95%	250 period	0°	3	С	NOTE	
	250 period	180°	3	С	NOTE	
Additional Notes: A=crit	eria A, B=criteria B	8, C=criter	ia C			
NOTE: System shutdown.						



# 14.3 Test Setup Photo

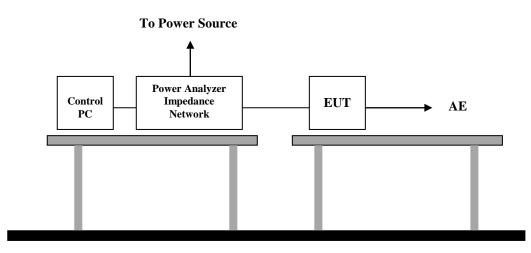




# 15. Harmonics

#### **15.1** Test Specification and Setup

#### **15.1.1 Test Specification**


AC mains
<75W
EN 61000-3-2/IEC 61000-3-2
(details referred to Sec 1.2)
2.5min
A
refer to ISL QA -T4-E-S14
20°C
51%

## **Test Procedure**

The EUT is supplied in series with shunts or current transformers from a source having the same nominal voltage and frequency as the rated supply voltage and frequency of the EUT. The EUT is configured to its rated current with additional resistive load when the testing is performed.

Equipment having more than one rated voltage shall be tested at the rated voltage producing the highest harmonics as compared with the limits.

#### 15.1.2 Test Setup





#### 15.1.3 Limit

Limits of Class A Harmonics Currents

Harmonics Order	Maximum Permissible harmonic current	Harmonics Order	Maximum Permissible harmonic current
n	А	n	А
Od	d harmonics	Eve	en harmonics
3	2.30	2	1.08
5	1.14	4	0.43
7	0.77	6	0.30
9	0.40	$8 \le n \le 40$	0.23 * 8/n
11	0.33		
13	0.21		
$15 \le n \le 39$	0.15 * 15/n		

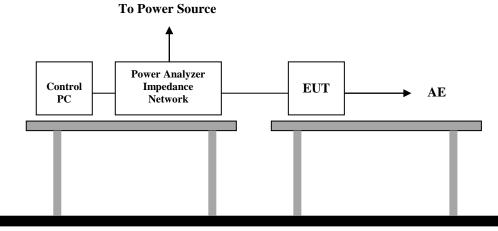
# 15.1.4 Test Result

Active input power under 75W, no limit apply, declare compliance



# **16. Voltage Fluctuations**

#### **16.1** Test Specification and Setup


#### **16.1.1 Test Specification**

····· <b>I</b> · · · · · · · ·	
Port:	AC mains
Basic Standard:	EN 61000-3-3/IEC61000-3-3
	(details referred to Sec 1.2)
Test Procedure	refer to ISL QA -T4-E-S14
Observation period:	For Pst 10min
	For Plt 2 hours
Temperature:	20°C
Humidity:	51%

#### **Test Procedure**

The EUT is supplied in series with reference impedance from a power source with the voltage and frequency as the nominal supply voltage and frequency of the EUT.

#### 16.1.2 Test Setup

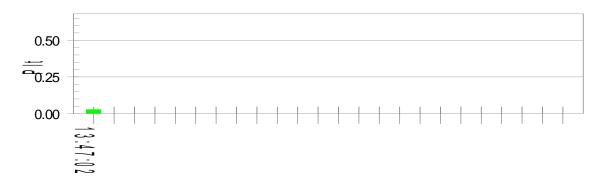


#### 16.1.3 Test Result

Performance of EUT complies with the given specification.



-75 of 82-


Test category: All parameters (European limits)		Test Margin: 100
Test duration (min): 10 Data file name: CTSMXL_F-000		1093.cts_data
Test Result: Pass	Status: Test Completed	

#### Pst_i and limit line

**European Limits** 



#### Plt and limit line



Parameter values recorded during	the test:
Vrms at the end of test (Volt):	229.66
T-max (mS):	0.0
Highest dc (%):	0.00
Highest dmax (%):	0.03
Highest Pst (10 min. period):	0.064
Highest Plt (2 hr. period):	0.028

Test limit (mS):	500.0	Pass
Test limit (%):	3.30	Pass
Test limit (%):	4.00	Pass
Test limit:	1.000	Pass
Test limit:	0.650	Pass



# 16.3 Test Setup Photo





# 17. Appendix

# **17.1** Appendix A: Test Equipment

# 17.1.1 Test Equipment List

Location	Equipment	Brand	Model	S/N	Last Cal. Date	Next Cal. Date
	Name					
Conduction 04	LISN 18	ROHDE &	ENV216	101424	07/01/2020	07/01/2021
		SCHWARZ				
Conduction 04	LISN 03	R&S	ESH3-Z5	828874/010	11/05/2020	11/05/2021
Conduction 04	ISN T8 07	Teseq GmbH	ISN T800	30834	09/03/2020	09/03/2021
Conduction 04	Chamber05 -1	WOKEN	CFD 300-NL	Chamber05 -1	08/22/2020	08/22/2021
	Cable			Cable		
Can denotion 04	EMI Receiver	ROHDE&SCH	ESCI	101392	06/03/2020	06/03/2021
Conduction 04	18	WARZ	ESCI	101392	06/03/2020	06/03/2021

Location Chamber02	Equipment Name	Brand	Model	S/N	Last Cal. Date	Next Cal. Date
Radiation (Chamber02)	BILOG Antenna 17	Schwarzbeck	Schwarzbeck VULB 9168+EMCI-N -6-05	645	03/09/2020	03/09/2021
Radiation (Chamber02)	Preamplifier 25	EMCI	EMC9135	980295	03/05/2020	03/05/2021
Radiation (Chamber02)	Coaxial Cable Chmb 02-10M-02	EMC	RG214U	Chmb 02-10M-02	10/14/2020	10/14/2021
Radiation (Chamber02)		ROHDE & SCHWARZ	ESCI	100804	08/19/2020	08/19/2021

Location	Equipment	Brand	Model	S/N	Last Cal. Date	Next Cal. Date
Chmb14	Name					
Rad. Above	Spectrum	R&S	FSV 40	101499	11/04/2020	11/04/2021
1GHz	Analyzer 25	ras	F3 V 40	101499	11/04/2020	11/04/2021
Rad. Above	Horn Antenna	ETS-Lindgren	3117	00066665	11/04/2020	11/04/2021
1GHz	06					
Rad. Above	Preamplifier 20	EMC	EMC051845	980084	11/19/2020	11/19/2021
1GHz		INSTRUMEN				
		Т				
Rad. Above	Microwave	HUBER	SUCOFLEX	78034/6	02/03/2020	02/03/2021
1GHz	Cable-11	SUHNER	106			
Rad. Above	Microwave	EMCI	EMC104-NM-	141112	02/26/2020	02/26/2021
1GHz	Cable-26		SM-800			



Location	Equipment Name	Brand	Model	S/N	Last Cal. Date	Next Cal. Date
EN61K-4-2	ESD Gun 9	EM TEST	Dito	V1018106503	04/28/2020	04/28/2021
EN61K-4-3	Broadband Log-Periodic Antenna	AR	AT1080	310698	N/A	N/A
EN61K-4-3	Horn Antenna RF-01	AR	ATS700M11 G	0335864	N/A	N/A
EN61K-4-3	Amplifier 80Mz~1GHz 250W	AR	250W1000A	312494	N/A	N/A
EN61K-4-3	Amplifier 800MHz~4.2GHz 50W	AR	50S1G4M1	312762	N/A	N/A
EN61K-4-3	Amplifier 4.0~8.0GHz 35W	AR	35S4G8AM1	0335752	N/A	N/A
EN61K-4-3	Broadband Coupler 80M~1GHz	Amplifier Research	DC6180A	0341805	N/A	N/A
EN61K-4-3	Coaxial Cable	INSULATED	NPS-4806-23 60-NP3	108599.003.01 .03	N/A	N/A
EN61K-4-3	Broadband Coupler 0.8G~4.26GHz	AR	DC7144A	0335226	N/A	N/A
EN61K-4-3	Broadband Coupler 4G~8GHz	AR	DC7350A	0335817	N/A	N/A
EN61K-4-3	Signal Generator 07	ROHDE& SCHWARZ	SMB100A	107780	11/29/2020	11/29/2021
EN61K-4-4 EN61K-4-5	EFT and SURGE Test System	EM TEST	UCS-500 M6B	V0728102674	03/20/2020	03/20/2021
EN61K-4-4	Capacitive Coupling Clamp	EM TEST	HFK	0907-106	03/20/2020	03/20/2021
EN61K-4-6	CDN M2+M3 04	TESEQ	CDN M016	43257	09/03/2020	09/03/2021
EN61K-4-6	CDN T4 03	FCC Inc.	FCC-801-T4	02068	06/20/2020	06/20/2021
EN61K-4-6	CDN T8-10_1	Teseq GmbH	CDN T8 10	41242	12/27/2020	12/27/2021
EN61K-4-6	Coaxial Cable 4-6 02-1			4-6 02-1	N/A	N/A
EN61K-4-6	Conducted Immunity Test System 03	Frankonia	CIT-10-75	126B1151	01/08/2021	01/08/2022
EN61K-4-8	Magnetic Field Immunity Loop	FCC	F-1000-4-8-L- 1M	01037	05/29/2020	05/29/2021
EN61K-4-8	Magnetic Field Test Generator	FCC	F-1000-4-8-G -125A	01038	05/29/2020	05/29/2021
EN61K-4-11	Voltage Dip and UP Simulator 01	NoiseKen	VDS-2002	VDS0640162	09/17/2020	09/17/2021
EN61K-3-2/3, EN61K-3-11-12		California Instruments	MX60T04GH 10400	72793	08/04/2020	08/04/2021

PS:  $N/A \Rightarrow$  The equipment does not need calibration.



Software for Controlling Spectrum/Receiver and Calculating Test Data					
Test Item	Filename	Version			
EN61000-3-2	California Instruments	CTSMXL V2.19.0			
EN61000-3-3	California Instruments	CTSMXL V2.19.0			
EN61000-4-2	N/A	2.0			
EN61000-4-3	i2	529b			
EN61000-4-4	EMC TEST	4.10			
EN61000-4-5	EMC TEST	4.10			
EN61000-4-6	FRANKONIA CD-LAB	V5.221			
EN61000-4-8	N/A				
EN61000-4-11	NOISE KEN	2.0			

#### ****Software for Controlling Spectrum/Receiver and Calculating Test Data**

Site	Filename	Version	Issue Date
Conduction/Radiation	EZ EMC	ISL-03A2	3/6/2013



#### 17.2 Appendix B: Uncertainty of Measurement

The laboratory measurement uncertainty accordance with refers to CISPR 16-4-2. If Ulab is less than or equal to Ucispr in Table 1, then the test report may either state the value of Ulab or state that Ulab is less than Ucispr.

The coverage factor k = 2 yields approximately a 95 % level of confidence.

<Conduction 04> AMN: ±2.90dB ISN T8: ±3.05dB

<Chamber 02 (10M)> Horizontal 30MHz~200MHz: ±4.52dB 200MHz~1000MHz: ±4.42dB Vertical 30MHz~200MHz: ±4.51dB 200MHz~1000MHz: ±4.70dB

<Chamber 14 (3M)> 1GHz~6GHz: ±4.93dB



<mmunity 02=""></mmunity>	<immunity 02=""></immunity>				
Test item	Uncertainty	Test item	Uncertainty		
EN 61000-4-2 (ESD)		EN 61000-4-6 (CS)			
Rise time tr	$\leq$ 9.81%	CDN	$\pm 1.74$ dB		
Peak current Ip	$\leq 5.54\%$	EM Clamp	± 3.36dB		
current at 30 ns	$\leq 5.55\%$	EN 61000-4-8 (Magnetic)	$\pm 6.53\%$		
current at 60 ns	$\leq 5.55\%$	EN 61000-4-11 (Dips)	$\pm 2.41\%$		
EN 61000-4-3 (RS)	$\pm 1.89 dB$	EN 61000-3-2 (Harmonics)	$\pm$ 1.29 %		
EN 61000-4-4 (EFT)		EN 61000-3-3 (Fluctuations and Flicker)	± 6.8 %		
voltage rise time (tr)	$\pm 5.1\%$				
peak voltage value (VP)	± 6.39%				
voltage pulse width (tw)	$\pm 5.0\%$				
EN 61000-4-5 (Surge)					
open-circuit voltage front time	±13.5%				
open-circuit voltage peak value	±6.6%				
open-circuit voltage duration (Td)	53.33µs				

#### <Immunity 02>



# **17.3** Appendix C: Photographs of EUT

Please refer to the File of ISL-21LE080P-MA

---- END ----

-82 of 82-